1、windows伺服器怎麼反爬蟲
伺服器穩定和性能來說,現在阿里雲好點.騰訊雲,網路雲等性能也都差不多.但是沒有阿里雲的相關服務配套齊全.不過他們的價格相對較貴,最近我在用小鳥雲便宜點,價格還是可觀的.穩定性還可以,特別是它的高防雲伺服器,最近都在打折,SSD+DDR4,還免費送抗攻擊容量,看你自己實際情況去選擇了
2、python 爬蟲伺服器怎麼判定是程序
你是說伺服器怎麼反爬蟲么?
特徵:比如同 IP 高頻訪問、UA 不對、Cookie 不對等等,可以識別出是爬蟲。
蜜罐:做一些只有爬蟲能夠訪問到但是用戶不會進入的鏈接,訪問到蜜罐的都是爬蟲。
展示:比如把網站內的重要內容換成圖片,用戶看到是正常的,爬蟲抓回去還得做 OCR。
3、windows伺服器怎麼反爬蟲
手工識別和拒絕爬蟲的訪問
相當多的爬蟲對網站會造成非常高的負載,因此識別爬蟲的來源IP是很容易的事情。最簡單的辦法就是用netstat檢查80埠的連接:
netstat -nt | grep youhostip:80 | awk '{print $5}' | awk -F":" '{print $1}'| sort | uniq -c | sort -r -n
這行shell可以按照80埠連接數量對來源IP進行排序,這樣可以直觀的判斷出來網頁爬蟲。一般來說爬蟲的並發連接非常高。
如果使用lighttpd做Web
Server,那麼就更簡單了。lighttpd的mod_status提供了非常直觀的並發連接的信息,包括每個連接的來源IP,訪問的URL,連接狀
態和連接時間等信息,只要檢查那些處於handle-request狀態的高並發IP就可以很快確定爬蟲的來源IP了。
拒絕爬蟲請求既可以通過內核防火牆來拒絕,也可以在web server拒絕,比方說用iptables拒絕:
iptables -A INPUT -i eth0 -j DROP -p tcp --dport 80 -s 84.80.46.0/24
直接封鎖爬蟲所在的C網段地址。這是因為一般爬蟲都是運行在託管機房裡面,可能在一個C段裡面的多台伺服器上面都有爬蟲,而這個C段不可能是用戶寬頻上網,封鎖C段可以很大程度上解決問題。
通過識別爬蟲的User-Agent信息來拒絕爬蟲
有很多爬蟲並不會以很高的並發連接爬取,一般不容易暴露自己;有些爬蟲的來源IP分布很廣,很難簡單的通過封鎖IP段地址來解決問題;另外還有很多
各種各樣的小爬蟲,它們在嘗試Google以外創新的搜索方式,每個爬蟲每天爬取幾萬的網頁,幾十個爬蟲加起來每天就能消耗掉上百萬動態請求的資源,由於
每個小爬蟲單獨的爬取量都很低,所以你很難把它從每天海量的訪問IP地址當中把它准確的挖出來。
這種情況下我們可以通過爬蟲的User-Agent信息來識別。每個爬蟲在爬取網頁的時候,會聲明自己的User-Agent信息,因此我們就可以
通過記錄和分析User-Agent信息來挖掘和封鎖爬蟲。我們需要記錄每個請求的User-Agent信息,對於Rails來說我們可以簡單的在
app/controllers/application.rb裡面添加一個全局的before_filter,來記錄每個請求的User-Agent信
息:
logger.info "HTTP_USER_AGENT #{request.env["HTTP_USER_AGENT"]}"
然後統計每天的proction.log,抽取User-Agent信息,找出訪問量最大的那些User-Agent。要注意的是我們只關注那
些爬蟲的User-Agent信息,而不是真正瀏覽器User-Agent,所以還要排除掉瀏覽器User-Agent,要做到這一點僅僅需要一行
shell:
grep HTTP_USER_AGENT proction.log | grep -v -E 'MSIE|Firefox|Chrome|Opera|Safari|Gecko' | sort | uniq -c | sort -r -n | head -n 100 > bot.log
統計結果類似這樣:
57335 HTTP_USER_AGENT Baispider+(+http://www.baidu.com/search/spider.htm)
56639 HTTP_USER_AGENT Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)
42610 HTTP_USER_AGENT Mediapartners-Google
19131 HTTP_USER_AGENT msnbot/2.0b (+http://search.msn.com/msnbot.htm)
從日誌就可以直觀的看出每個爬蟲的請求次數。要根據User-Agent信息來封鎖爬蟲是件很容易的事情,lighttpd配置如下:
$HTTP["useragent"] =~ "qihoobot|^Java|Commons-HttpClient|Wget|^PHP|Ruby|Python" {
url.rewrite = ( "^/(.*)" => "/crawler.html" )
}
使用這種方式來封鎖爬蟲雖然簡單但是非常有效,除了封鎖特定的爬蟲,還可以封鎖常用的編程語言和HTTP類庫的User-Agent信息,這樣就可以避免很多無謂的程序員用來練手的爬蟲程序對網站的騷擾。
還有一種比較常見的情況,就是某個搜索引擎的爬蟲對網站爬取頻率過高,但是搜索引擎給網站帶來了很多流量,我們並不希望簡單的封鎖爬蟲,僅僅是希望降低爬蟲的請求頻率,減輕爬蟲對網站造成的負載,那麼我們可以這樣做:
$HTTP["user-agent"] =~ "Baispider+" {
connection.delay-seconds = 10
}
對百度的爬蟲請求延遲10秒鍾再進行處理,這樣就可以有效降低爬蟲對網站的負載了。
通過網站流量統計系統和日誌分析來識別爬蟲
有些爬蟲喜歡修改User-Agent信息來偽裝自己,把自己偽裝成一個真實瀏覽器的User-Agent信息,讓你無法有效的識別。這種情況下我們可以通過網站流量系統記錄的真實用戶訪問IP來進行識別。
主流的網站流量統計系統不外乎兩種實現策略:一種策略是在網頁裡面嵌入一段js,這段js會向特定的統計伺服器發送請求的方式記錄訪問量;另一種策
略是直接分析伺服器日誌,來統計網站訪問量。在理想的情況下,嵌入js的方式統計的網站流量應該高於分析伺服器日誌,這是因為用戶瀏覽器會有緩存,不一定
每次真實用戶訪問都會觸發伺服器的處理。但實際情況是,分析伺服器日誌得到的網站訪問量遠遠高於嵌入js方式,極端情況下,甚至要高出10倍以上。
現在很多網站喜歡採用awstats來分析伺服器日誌,來計算網站的訪問量,但是當他們一旦採用Google
Analytics來統計網站流量的時候,卻發現GA統計的流量遠遠低於awstats,為什麼GA和awstats統計會有這么大差異呢?罪魁禍首就是
把自己偽裝成瀏覽器的網路爬蟲。這種情況下awstats無法有效的識別了,所以awstats的統計數據會虛高。
其實作為一個網站來說,如果希望了解自己的網站真實訪問量,希望精確了解網站每個頻道的訪問量和訪問用戶,應該用頁面裡面嵌入js的方式來開發自己
的網站流量統計系統。自己做一個網站流量統計系統是件很簡單的事情,寫段伺服器程序響應客戶段js的請求,分析和識別請求然後寫日誌的同時做後台的非同步統
計就搞定了。
通過流量統計系統得到的用戶IP基本是真實的用戶訪問,因為一般情況下爬蟲是無法執行網頁裡面的js代碼片段的。所以我們可以拿流量統計系統記錄的
IP和伺服器程序日誌記錄的IP地址進行比較,如果伺服器日誌裡面某個IP發起了大量的請求,在流量統計系統裡面卻根本找不到,或者即使找得到,可訪問量
卻只有寥寥幾個,那麼無疑就是一個網路爬蟲。
分析伺服器日誌統計訪問最多的IP地址段一行shell就可以了:
grep Processing proction.log | awk '{print $4}' | awk -F'.' '{print $1"."$2"."$3".0"}' | sort | uniq -c | sort -r -n | head -n 200 > stat_ip.log
然後把統計結果和流量統計系統記錄的IP地址進行對比,排除真實用戶訪問IP,再排除我們希望放行的網頁爬蟲,比方Google,百度,微軟msn爬蟲等等。最後的分析結果就就得到了爬蟲的IP地址了。以下代碼段是個簡單的實現示意:
whitelist = []
IO.foreach("#{RAILS_ROOT}/lib/whitelist.txt") { |line| whitelist << line.split[0].strip if line }
realiplist = []
IO.foreach("#{RAILS_ROOT}/log/visit_ip.log") { |line| realiplist << line.strip if line }
iplist = []
IO.foreach("#{RAILS_ROOT}/log/stat_ip.log") do |line|
ip = line.split[1].strip
iplist << ip if line.split[0].to_i > 3000 && !whitelist.include?(ip) && !realiplist.include?(ip)
end
Report.deliver_crawler(iplist)
分析伺服器日誌裡面請求次數超過3000次的IP地址段,排除白名單地址和真實訪問IP地址,最後得到的就是爬蟲IP了,然後可以發送郵件通知管理員進行相應的處理。
網站的實時反爬蟲防火牆實現策略
通過分析日誌的方式來識別網頁爬蟲不是一個實時的反爬蟲策略。如果一個爬蟲非要針對你的網站進行處心積慮的爬取,那麼他可能會採用分布式爬取策略,
比方說尋找幾百上千個國外的代理伺服器瘋狂的爬取你的網站,從而導致網站無法訪問,那麼你再分析日誌是不可能及時解決問題的。所以必須採取實時反爬蟲策
略,要能夠動態的實時識別和封鎖爬蟲的訪問。
要自己編寫一個這樣的實時反爬蟲系統其實也很簡單。比方說我們可以用memcached來做訪問計數器,記錄每個IP的訪問頻度,在單位時間之內,
如果訪問頻率超過一個閥值,我們就認為這個IP很可能有問題,那麼我們就可以返回一個驗證碼頁面,要求用戶填寫驗證碼。如果是爬蟲的話,當然不可能填寫驗
證碼,所以就被拒掉了,這樣很簡單就解決了爬蟲問題。
用memcache記錄每個IP訪問計數,單位時間內超過閥值就讓用戶填寫驗證碼,用Rails編寫的示例代碼如下:
ip_counter = Rails.cache.increment(request.remote_ip)
if !ip_counter
Rails.cache.write(request.remote_ip, 1, :expires_in => 30.minutes)
elsif ip_counter > 2000
render :template => 'test', :status => 401 and return false
end
這段程序只是最簡單的示例,實際的代碼實現我們還會添加很多判斷,比方說我們可能要排除白名單IP地址段,要允許特定的User-Agent通過,要針對登錄用戶和非登錄用戶,針對有無referer地址採取不同的閥值和計數加速器等等。
此外如果分布式爬蟲爬取頻率過高的話,過期就允許爬蟲再次訪問還是會對伺服器造成很大的壓力,因此我們可以添加一條策略:針對要求用戶填寫驗證碼的
IP地址,如果該IP地址短時間內繼續不停的請求,則判斷為爬蟲,加入黑名單,後續請求全部拒絕掉。為此,示例代碼可以改進一下:
before_filter :ip_firewall, :except => :test
def ip_firewall
render :file => "#{RAILS_ROOT}/public/403.html", :status => 403 if BlackList.include?(ip_sec)
end
我們可以定義一個全局的過濾器,對所有請求進行過濾,出現在黑名單的IP地址一律拒絕。對非黑名單的IP地址再進行計數和統計:
ip_counter = Rails.cache.increment(request.remote_ip)
if !ip_counter
Rails.cache.write(request.remote_ip, 1, :expires_in => 30.minutes)
elsif ip_counter > 2000
crawler_counter = Rails.cache.increment("crawler/#{request.remote_ip}")
if !crawler_counter
Rails.cache.write("crawler/#{request.remote_ip}", 1, :expires_in => 10.minutes)
elsif crawler_counter > 50
BlackList.add(ip_sec)
render :file => "#{RAILS_ROOT}/public/403.html", :status => 403 and return false
end
render :template => 'test', :status => 401 and return false
end
如果某個IP地址單位時間內訪問頻率超過閥值,再增加一個計數器,跟蹤他會不會立刻填寫驗證碼,如果他不填寫驗證碼,在短時間內還是高頻率訪問,就
把這個IP地址段加入黑名單,除非用戶填寫驗證碼激活,否則所有請求全部拒絕。這樣我們就可以通過在程序裡面維護黑名單的方式來動態的跟蹤爬蟲的情況,甚
至我們可以自己寫個後台來手工管理黑名單列表,了解網站爬蟲的情況。
關於這個通用反爬蟲的功能,我們開發一個開源的插件:https://github.com/csdn-dev/limiter
這個策略已經比較智能了,但是還不夠好!我們還可以繼續改進:
1、用網站流量統計系統來改進實時反爬蟲系統
還記得嗎?網站流量統計系統記錄的IP地址是真實用戶訪問IP,所以我們在網站流量統計系統裡面也去操作memcached,但是這次不是增加計數
值,而是減少計數值。在網站流量統計系統裡面每接收到一個IP請求,就相應的cache.decrement(key)。所以對於真實用戶的IP來說,它
的計數值總是加1然後就減1,不可能很高。這樣我們就可以大大降低判斷爬蟲的閥值,可以更加快速准確的識別和拒絕掉爬蟲。
2、用時間窗口來改進實時反爬蟲系統
爬蟲爬取網頁的頻率都是比較固定的,不像人去訪問網頁,中間的間隔時間比較無規則,所以我們可以給每個IP地址建立一個時間窗口,記錄IP地址最近
12次訪問時間,每記錄一次就滑動一次窗口,比較最近訪問時間和當前時間,如果間隔時間很長判斷不是爬蟲,清除時間窗口,如果間隔不長,就回溯計算指定時
間段的訪問頻率,如果訪問頻率超過閥值,就轉向驗證碼頁面讓用戶填寫驗證碼。
最終這個實時反爬蟲系統就相當完善了,它可以很快的識別並且自動封鎖爬蟲的訪問,保護網站的正常訪問。不過有些爬蟲可能相當狡猾,它也許會通過大量
的爬蟲測試來試探出來你的訪問閥值,以低於閥值的爬取速度抓取你的網頁,因此我們還需要輔助第3種辦法,用日誌來做後期的分析和識別,就算爬蟲爬的再慢,
它累計一天的爬取量也會超過你的閥值被你日誌分析程序識別出來。
4、怎麼判斷爬蟲伺服器的ip被網站封了
設置putty
打開putty,找到左邊的SSH,選擇Tunnels,然後在Source
port上填入你想要的埠號,然後Add一下,下面選擇Dynamic即可。現在你機器的127.0.0.1:埠號(例如:127.0.0.1:9999,當然使用localhost替換127.0.0.1也是可以的)就是代理伺服器了。設置好後需要用putty登錄到伺服器,並保持登錄狀態。然後設置一下瀏覽器的代理伺服器就可以了。
設置FireFox
工具–>選項–>高級–>網路,在SOCKS主機填入本機的IP以及剛才設置的代理埠號即可。
這樣設置之後,瀏覽器打開網站顯示的就是伺服器的IP了,直接用你的瀏覽器訪問網站,如果能不能打開對方的網站並且不用代理就能打開說明你的IP被網站封了。如果你的伺服器在國外也可以用來訪問國外的網站不會被屏蔽。如果想訪問facebook這樣的大網站還需要設置一下dns。使瀏覽器解析網站的時候用伺服器的dns,在Firefox的地址欄輸入
about:config
,找到network.proxy.socks_remote_dns,雙擊改成true即可。該選項是使用遠程代理伺服器來解析DNS,避免DNS欺騙。
5、伺服器上的爬蟲為什麼就會被目標網站識別出來?
你IP抓取量數值頻繁
IP地址非某些正常搜索引擎呢!
6、天貓爬蟲,爬搜索結果頁在本地沒問題,部署在雲伺服器會被反爬了,請問這是什麼情況?
天貓爬蟲爬手術,結果爬反了,這是安裝的時候反安了抖一下線就好了。
7、做爬蟲用的伺服器或者VPS用什麼好
爬蟲的話,因為比較佔用資源,如果是VPS的話,可能會被IDC刪除。伺服器的話,因為是獨立資源,IDC不管,最多也就是限制一下你的網路而已。
所以,用伺服器好安全一點。
8、爬蟲代理伺服器怎麼用
打開火狐瀏覽器右上角的設置選項,選擇「選項」
爬蟲代理伺服器怎麼用?
選擇左邊選項欄中最下方的「高級」選項
爬蟲代理伺服器怎麼用?
「高級」選項下拉菜單「網路」。
連接配置 Firefox 如何連接至國際互聯網,右側的「設置網路」
爬蟲代理伺服器怎麼用?
在菜單中選擇「手動選擇配置代理」
爬蟲代理伺服器怎麼用?
將您的http代理IP地址填寫在IP地址欄內,埠代碼寫在相應的位置。
其他的代理SSL代理、FTP代理、socks主機都類似。
現在我用的是 618IP代理,IP還蠻多的喲。
9、爬蟲訪問導致伺服器500報錯
500是伺服器內部錯誤,伺服器日誌中應該有體現的,個人推測應該是服務對於爬蟲訪問傳遞的參數跟用瀏覽器訪問不同的處理異常導致的