导航:首页 > 网站优化 > python做seo

python做seo

发布时间:2020-12-02 09:52:28

1、Python怎么做最优化

一、概观scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:1.非线性最优化fmin -- 简单Nelder-Mead算法fmin_powell -- 改进型Powell法fmin_bfgs -- 拟Newton法fmin_cg -- 非线性共轭梯度法fmin_ncg -- 线性搜索Newton共轭梯度法leastsq -- 最小二乘2.有约束的多元函数问题fmin_l_bfgs_b ---使用L-BFGS-B算法fmin_tnc ---梯度信息fmin_cobyla ---线性逼近fmin_slsqp ---序列最小二乘法nnls ---解|| Ax - b ||_2 for x=03.全局优化anneal ---模拟退火算法brute --强力法4.标量函数fminboundbrentgoldenbracket5.拟合curve_fit-- 使用非线性最小二乘法拟合6.标量函数求根brentq ---classic Brent (1973)brenth ---A variation on the classic Brent(1980)ridder ---Ridder是提出这个算法的人名bisect ---二分法newton ---牛顿法fixed_point7.多维函数求根fsolve ---通用broyden1 ---Broyden’s first Jacobian approximation.broyden2 ---Broyden’s second Jacobian approximationnewton_krylov ---Krylov approximation for inverse Jacobiananderson ---extended Anderson mixingexcitingmixing ---tuned diagonal Jacobian approximationlinearmixing ---scalar Jacobian approximationdiagbroyden ---diagonal Broyden Jacobian approximation8.实用函数line_search ---找到满足强Wolfe的alpha值check_grad ---通过和前向有限差分逼近比较检查梯度函数的正确性二、实战非线性最优化fmin完整的调用形式是:fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None)不过我们最常使用的就是前两个参数。一个描述优化问题的函数以及初值。后面的那些参数我们也很容易理解。如果您能用到,请自己研究。下面研究一个最简单的问题,来感受这个函数的使用方法:f(x)=x**2-4*x+8,我们知道,这个函数的最小值是4,在x=2的时候取到。from scipy.optimize import fmin #引入优化包def myfunc(x):return x**2-4*x+8 #定义函数x0 = [1.3] #猜一个初值xopt = fmin(myfunc, x0) #求解print xopt #打印结果运行之后,给出的结果是:Optimization terminated successfully.Current function value: 4.000000Iterations: 16Function evaluations: 32[ 2.00001953]程序准确的计算得出了最小值,不过最小值点并不是严格的2,这应该是由二进制机器编码误差造成的。除了fmin_ncg必须提供梯度信息外,其他几个函数的调用大同小异,完全类似。我们不妨做一个对比:from scipy.optimize import fmin,fmin_powell,fmin_bfgs,fmin_cgdef myfunc(x):return x**2-4*x+8x0 = [1.3]xopt1 = fmin(myfunc, x0)print xopt1printxopt2 = fmin_powell(myfunc, x0)print xopt2printxopt3 = fmin_bfgs(myfunc, x0)print xopt3printxopt4 = fmin_cg(myfunc,x0)print xopt4给出的结果是:Optimization terminated successfully.Current function value: 4.000000Iterations: 16Function evaluations: 32[ 2.00001953]Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 531.99999999997Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 12Gradient evaluations: 4[ 2.00000001]Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 15Gradient evaluations: 5[ 2.]我们可以根据给出的消息直观的判断算法的执行情况。每一种算法数学上的问题,请自己看书学习。个人感觉,如果不是纯研究数学的工作,没必要搞清楚那些推导以及定理云云。不过,必须了解每一种算法的优劣以及能力所及。在使用的时候,不妨多种算法都使用一下,看看效果分别如何,同时,还可以互相印证算法失效的问题。在from scipy.optimize import fmin之后,就可以使用help(fmin)来查看fmin的帮助信息了。帮助信息中没有例子,但是给出了每一个参数的含义说明,这是调用函数时候的最有价值参考。有源码研究癖好的,或者当你需要改进这些已经实现的算法的时候,可能需要查看optimize中的每种算法的源代码。在这里:https:/ / github. com/scipy/scipy/blob/master/scipy/optimize/optimize.py聪明的你肯定发现了,顺着这个链接往上一级、再往上一级,你会找到scipy的几乎所有源码!

2、学seo需要学习python吗

seo是针对页面针对搜索引擎的优化,跟python没有关系,不需要为了seo学习python。

3、python对于做SEO主要有什么作用

数据库级别了,python可以开发爬虫抓取想要的数据。给seo做内容还是不错的!

4、php,python哪个队seo帮助大

python是脚本语言,PHP是编程语言,两种语言都是用来编写程序的。
SEO是做搜索引擎优化的,也就是不花钱做排名。这个需要专业的人员经过长时间的积累才能实现。

5、优化Python爬虫速度的方法有哪些

很多爬虫工作者都遇到过抓取非常慢的问题,尤其是需要采集大量数据的情况下。那么如何提高爬虫采集效率就十分关键,那一块了解如何提高爬虫采集效率问题。
1.尽可能减少网站访问次数
单次爬虫的主要把时间消耗在网络请求等待响应上面,所以能减少网站访问就减少网站访问,既减少自身的工作量,也减轻网站的压力,还降低被封的风险。
第一步要做的就是流程优化,尽量精简流程,避免在多个页面重复获取。
随后去重,同样是十分重要的手段,一般根据url或者id进行唯一性判别,爬过的就不再继续爬了。
2.分布式爬虫
即便把各种法子都用尽了,单机单位时间内能爬的网页数仍是有限的,面对大量的网页页面队列,可计算的时间仍是很长,这种情况下就必须要用机器换时间了,这就是分布式爬虫。
第一步,分布式并不是爬虫的本质,也并不是必须的,对于互相独立、不存在通信的任务就可手动对任务分割,随后在多个机器上各自执行,减少每台机器的工作量,费时就会成倍减少。
例如有200W个网页页面待爬,可以用5台机器各自爬互不重复的40W个网页页面,相对来说单机费时就缩短了5倍。
可是如果存在着需要通信的状况,例如一个变动的待爬队列,每爬一次这个队列就会发生变化,即便分割任务也就有交叉重复,因为各个机器在程序运行时的待爬队列都不一样了——这种情况下只能用分布式,一个Master存储队列,其他多个Slave各自来取,这样共享一个队列,取的情况下互斥也不会重复爬取。IPIDEA提供高匿稳定的IP同时更注重用户隐私的保护,保障用户的信息安全。含有240+国家地区的ip,支持API批量使用,支持多线程高并发使用。

6、Python怎么做最优化

最优化
为什么要做最优化呢?因为在生活中,人们总是希望幸福值或其它达到一个极值,比如做生意时希望成本最小,收入最大,所以在很多商业情境中,都会遇到求极值的情况。
函数求根
这里「函数的根」也称「方程的根」,或「函数的零点」。
先把我们需要的包加载进来。import numpy as npimport scipy as spimport scipy.optimize as optimport matplotlib.pyplot as plt%matplotlib inline
函数求根和最优化的关系?什么时候函数是最小值或最大值?
两个问题一起回答:最优化就是求函数的最小值或最大值,同时也是极值,在求一个函数最小值或最大值时,它所在的位置肯定是导数为 0 的位置,所以要求一个函数的极值,必然要先求导,使其为 0,所以函数求根就是为了得到最大值最小值。
scipy.optimize 有什么方法可以求根?
可以用 scipy.optimize 中的 bisect 或 brentq 求根。f = lambda x: np.cos(x) - x # 定义一个匿名函数x = np.linspace(-5, 5, 1000) # 先生成 1000 个 xy = f(x) # 对应生成 1000 个 f(x)plt.plot(x, y); # 看一下这个函数长什么样子plt.axhline(0, color='k'); # 画一根横线,位置在 y=0

opt.bisect(f, -5, 5) # 求取函数的根0.7390851332155535plt.plot(x, y)plt.axhline(0, color='k')plt.scatter([_], [0], c='r', s=100); # 这里的 [_] 表示上一个 Cell 中的结果,这里是 x 轴上的位置,0 是 y 上的位置

求根有两种方法,除了上面介绍的 bisect,还有 brentq,后者比前者快很多。%timeit opt.bisect(f, -5, 5)%timeit opt.brentq(f, -5, 5)10000 loops, best of 3: 157 s per loopThe slowest run took 11.65 times longer than the fastest. This could mean that an intermediate result is being cached.10000 loops, best of 3: 35.9 s per loop
函数求最小化
求最小值就是一个最优化问题。求最大值时只需对函数做一个转换,比如加一个负号,或者取倒数,就可转成求最小值问题。所以两者是同一问题。
初始值对最优化的影响是什么?
举例来说,先定义个函数。f = lambda x: 1-np.sin(x)/xx = np.linspace(-20., 20., 1000)y = f(x)
当初始值为 3 值,使用 minimize 函数找到最小值。minimize 函数是在新版的 scipy 里,取代了以前的很多最优化函数,是个通用的接口,背后是很多方法在支撑。x0 = 3xmin = opt.minimize(f, x0).x # x0 是起始点,起始点最好离真正的最小值点不要太远plt.plot(x, y)plt.scatter(x0, f(x0), marker='o', s=300); # 起始点画出来,用圆圈表示plt.scatter(xmin, f(xmin), marker='v', s=300); # 最小值点画出来,用三角表示plt.xlim(-20, 20);

初始值为 3 时,成功找到最小值。
现在来看看初始值为 10 时,找到的最小值点。x0 = 10xmin = opt.minimize(f, x0).xplt.plot(x, y)plt.scatter(x0, f(x0), marker='o', s=300)plt.scatter(xmin, f(xmin), marker='v', s=300)plt.xlim(-20, 20);

由上图可见,当初始值为 10 时,函数找到的是局部最小值点,可见 minimize 的默认算法对起始点的依赖性。
那么怎么才能不管初始值在哪个位置,都能找到全局最小值点呢?
如何找到全局最优点?
可以使用 basinhopping 函数找到全局最优点,相关背后算法,可以看帮助文件,有提供论文的索引和出处。
我们设初始值为 10 看是否能找到全局最小值点。x0 = 10from scipy.optimize import basinhoppingxmin = basinhopping(f,x0,stepsize = 5).xplt.plot(x, y);plt.scatter(x0, f(x0), marker='o', s=300);plt.scatter(xmin, f(xmin), marker='v', s=300);plt.xlim(-20, 20);

当起始点在比较远的位置,依然成功找到了全局最小值点。
如何求多元函数最小值?
以二元函数为例,使用 minimize 求对应的最小值。def g(X): x,y = X return (x-1)**4 + 5 * (y-1)**2 - 2*x*yX_opt = opt.minimize(g, (8, 3)).x # (8,3) 是起始点print X_opt[ 1.88292611 1.37658521]fig, ax = plt.subplots(figsize=(6, 4)) # 定义画布和图形x_ = y_ = np.linspace(-1, 4, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, g((X, Y)), 50) # 等高线图ax.plot(X_opt[0], X_opt[1], 'r*', markersize=15) # 最小点的位置是个元组ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax) # colorbar 表示颜色越深,高度越高fig.tight_layout()

画3D 图。from mpl_toolkits.mplot3d import Axes3Dfrom matplotlib import cmfig = plt.figure()ax = fig.gca(projection='3d')x_ = y_ = np.linspace(-1, 4, 100)X, Y = np.meshgrid(x_, y_)surf = ax.plot_surface(X, Y, g((X,Y)), rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)cset = ax.contour(X, Y, g((X,Y)), zdir='z',offset=-5, cmap=cm.coolwarm)fig.colorbar(surf, shrink=0.5, aspect=5);

曲线拟合
曲线拟合和最优化有什么关系?
曲线拟合的问题是,给定一组数据,它可能是沿着一条线散布的,这时要找到一条最优的曲线来拟合这些数据,也就是要找到最好的线来代表这些点,这里的最优是指这些点和线之间的距离是最小的,这就是为什么要用最优化问题来解决曲线拟合问题。
举例说明,给一些点,找到一条线,来拟合这些点。
先给定一些点:N = 50 # 点的个数m_true = 2 # 斜率b_true = -1 # 截距dy = 2.0 # 误差np.random.seed(0)xdata = 10 * np.random.random(N) # 50 个 x,服从均匀分布ydata = np.random.normal(b_true + m_true * xdata, dy) # dy 是标准差plt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');

上面的点整体上呈现一个线性关系,要找到一条斜线来代表这些点,这就是经典的一元线性回归。目标就是找到最好的线,使点和线的距离最短。要优化的函数是点和线之间的距离,使其最小。点是确定的,而线是可变的,线是由参数值,斜率和截距决定的,这里就是要通过优化距离找到最优的斜率和截距。
点和线的距离定义如下:def chi2(theta, x, y): return np.sum(((y - theta[0] - theta[1] * x)) ** 2)
上式就是误差平方和。
误差平方和是什么?有什么作用?
误差平方和公式为:
误差平方和大,表示真实的点和预测的线之间距离太远,说明拟合得不好,最好的线,应该是使误差平方和最小,即最优的拟合线,这里是条直线。
误差平方和就是要最小化的目标函数。
找到最优的函数,即斜率和截距。theta_guess = [0, 1] # 初始值theta_best = opt.minimize(chi2, theta_guess, args=(xdata, ydata)).xprint(theta_best)[-1.01442005 1.93854656]
上面两个输出即是预测的直线斜率和截距,我们是根据点来反推直线的斜率和截距,那么真实的斜率和截距是多少呢?-1 和 2,很接近了,差的一点是因为有噪音的引入。xfit = np.linspace(0, 10)yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');

最小二乘(Least Square)是什么?
上面用的是 minimize 方法,这个问题的目标函数是误差平方和,这就又有一个特定的解法,即最小二乘。
最小二乘的思想就是要使得观测点和估计点的距离的平方和达到最小,这里的“二乘”指的是用平方来度量观测点与估计点的远近(在古汉语中“平方”称为“二乘”),“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小。
关于最小二乘估计的计算,涉及更多的数学知识,这里不想详述,其一般的过程是用目标函数对各参数求偏导数,并令其等于 0,得到一个线性方程组。具体推导过程可参考斯坦福机器学习讲义 第 7 页。def deviations(theta, x, y): return (y - theta[0] - theta[1] * x)theta_best, ier = opt.leastsq(deviations, theta_guess, args=(xdata, ydata))print(theta_best)[-1.01442016 1.93854659]
最小二乘 leastsq 的结果跟 minimize 结果一样。注意 leastsq 的第一个参数不再是误差平方和 chi2,而是误差本身 deviations,即没有平方,也没有和。yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');

非线性最小二乘
上面是给一些点,拟合一条直线,拟合一条曲线也是一样的。def f(x, beta0, beta1, beta2): # 首先定义一个非线性函数,有 3 个参数 return beta0 + beta1 * np.exp(-beta2 * x**2)beta = (0.25, 0.75, 0.5) # 先猜 3 个 betaxdata = np.linspace(0, 5, 50)y = f(xdata, *beta)ydata = y + 0.05 * np.random.randn(len(xdata)) # 给 y 加噪音def g(beta): return ydata - f(xdata, *beta) # 真实 y 和 预测值的差,求最优曲线时要用到beta_start = (1, 1, 1)beta_opt, beta_cov = opt.leastsq(g, beta_start)print beta_opt # 求到的 3 个最优的 beta 值[ 0.25525709 0.74270226 0.54966466]
拿估计的 beta_opt 值跟真实的 beta = (0.25, 0.75, 0.5) 值比较,差不多。fig, ax = plt.subplots()ax.scatter(xdata, ydata) # 画点ax.plot(xdata, y, 'r', lw=2) # 真实值的线ax.plot(xdata, f(xdata, *beta_opt), 'b', lw=2) # 拟合的线ax.set_xlim(0, 5)ax.set_xlabel(r"$x$", fontsize=18)ax.set_ylabel(r"$f(x, \beta)$", fontsize=18)fig.tight_layout()

除了使用最小二乘,还可以使用曲线拟合的方法,得到的结果是一样的。beta_opt, beta_cov = opt.curve_fit(f, xdata, ydata)print beta_opt[ 0.25525709 0.74270226 0.54966466]
有约束的最小化
有约束的最小化是指,要求函数最小化之外,还要满足约束条件,举例说明。
边界约束def f(X): x, y = X return (x-1)**2 + (y-1)**2 # 这是一个碗状的函数x_opt = opt.minimize(f, (0, 0), method='BFGS').x # 无约束最优化
假设有约束条件,x 和 y 要在一定的范围内,如 x 在 2 到 3 之间,y 在 0 和 2 之间。bnd_x1, bnd_x2 = (2, 3), (0, 2) # 对自变量的约束x_cons_opt = opt.minimize(f, np.array([0, 0]), method='L-BFGS-B', bounds=[bnd_x1, bnd_x2]).x # bounds 矩形约束fig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X,Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 没有约束下的最小值,蓝色五角星ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 有约束下的最小值,红色星星bound_rect = plt.Rectangle((bnd_x1[0], bnd_x2[0]), bnd_x1[1] - bnd_x1[0], bnd_x2[1] - bnd_x2[0], facecolor="grey")ax.add_patch(bound_rect)ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()

不等式约束
介绍下相关理论,先来看下存在等式约束的极值问题求法,比如下面的优化问题。
目标函数是 f(w),下面是等式约束,通常解法是引入拉格朗日算子,这里使用 ββ 来表示算子,得到拉格朗日公式为
l 是等式约束的个数。
然后分别对 w 和ββ 求偏导,使得偏导数等于 0,然后解出 w 和βiβi,至于为什么引入拉格朗日算子可以求出极值,原因是 f(w) 的 dw 变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w) 的梯度与其他等式梯度的线性组合平行,因此他们之间存在线性关系。(参考《最优化与KKT条件》)
对于不等式约束的极值问题
常常利用拉格朗日对偶性将原始问题转换为对偶问题,通过解对偶问题而得到原始问题的解。该方法应用在许多统计学习方法中。有兴趣的可以参阅相关资料,这里不再赘述。def f(X): return (X[0] - 1)**2 + (X[1] - 1)**2def g(X): return X[1] - 1.75 - (X[0] - 0.75)**4x_opt = opt.minimize(f, (0, 0), method='BFGS').xconstraints = [dict(type='ineq', fun=g)] # 约束采用字典定义,约束方式为不等式约束,边界用 g 表示x_cons_opt = opt.minimize(f, (0, 0), method='SLSQP', constraints=constraints).xfig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X, Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 蓝色星星,没有约束下的最小值ax.plot(x_, 1.75 + (x_-0.75)**4, '', markersize=15)ax.fill_between(x_, 1.75 + (x_-0.75)**4, 3, color="grey")ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 在区域约束下的最小值ax.set_ylim(-1, 3)ax.set_xlabel(r"$x_0$", fontsize=18)ax.set_ylabel(r"$x_1$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()

scipy.optimize.minimize 中包括了多种最优化算法,每种算法使用范围不同,详细参考官方文档。

7、Python怎么做最优化

一、概观
scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:
1.非线性最优化
fmin -- 简单Nelder-Mead算法
fmin_powell -- 改进型Powell法
fmin_bfgs -- 拟Newton法
fmin_cg -- 非线性共轭梯度法
fmin_ncg -- 线性搜索Newton共轭梯度法
leastsq -- 最小二乘
2.有约束的多元函数问题
fmin_l_bfgs_b ---使用L-BFGS-B算法
fmin_tnc ---梯度信息
fmin_cobyla ---线性逼近
fmin_slsqp ---序列最小二乘法
nnls ---解|| Ax - b ||_2 for x>=0
3.全局优化
anneal ---模拟退火算法
brute --强力法
4.标量函数
fminbound
brent
golden
bracket
5.拟合
curve_fit-- 使用非线性最小二乘法拟合
6.标量函数求根
brentq ---classic Brent (1973)
brenth ---A variation on the classic Brent(1980)ridder ---Ridder是提出这个算法的人名
bisect ---二分法
newton ---牛顿法
fixed_point
7.多维函数求根
fsolve ---通用
broyden1 ---Broyden’s first Jacobian approximation.
broyden2 ---Broyden’s second Jacobian approximationnewton_krylov ---Krylov approximation for inverse Jacobiananderson ---extended Anderson mixing
excitingmixing ---tuned diagonal Jacobian approximationlinearmixing ---scalar Jacobian approximationdiagbroyden ---diagonal Broyden Jacobian approximation8.实用函数
line_search ---找到满足强Wolfe的alpha值
check_grad ---通过和前向有限差分逼近比较检查梯度函数的正确性二、实战非线性最优化
fmin完整的调用形式是:
fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None)不过我们最常使用的就是前两个参数。一个描述优化问题的函数以及初值。后面的那些参数我们也很容易理解。如果您能用到,请自己研究。下面研究一个最简单的问题,来感受这个函数的使用方法:f(x)=x**2-4*x+8,我们知道,这个函数的最小值是4,在x=2的时候取到。
from scipy.optimize import fmin #引入优化包def myfunc(x):
return x**2-4*x+8 #定义函数
x0 = [1.3] #猜一个初值
xopt = fmin(myfunc, x0) #求解
print xopt #打印结果
运行之后,给出的结果是:
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 16
Function evaluations: 32
[ 2.00001953]
程序准确的计算得出了最小值,不过最小值点并不是严格的2,这应该是由二进制机器编码误差造成的。
除了fmin_ncg必须提供梯度信息外,其他几个函数的调用大同小异,完全类似。我们不妨做一个对比:
from scipy.optimize import fmin,fmin_powell,fmin_bfgs,fmin_cgdef myfunc(x):
return x**2-4*x+8
x0 = [1.3]
xopt1 = fmin(myfunc, x0)
print xopt1
print
xopt2 = fmin_powell(myfunc, x0)
print xopt2
print
xopt3 = fmin_bfgs(myfunc, x0)
print xopt3
print
xopt4 = fmin_cg(myfunc,x0)
print xopt4
给出的结果是:
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 16
Function evaluations: 32
[ 2.00001953]
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 2
Function evaluations: 53
1.99999999997
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 2
Function evaluations: 12
Gradient evaluations: 4
[ 2.00000001]
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 2
Function evaluations: 15
Gradient evaluations: 5
[ 2.]
我们可以根据给出的消息直观的判断算法的执行情况。每一种算法数学上的问题,请自己看书学习。个人感觉,如果不是纯研究数学的工作,没必要搞清楚那些推导以及定理云云。不过,必须了解每一种算法的优劣以及能力所及。在使用的时候,不妨多种算法都使用一下,看看效果分别如何,同时,还可以互相印证算法失效的问题。
在from scipy.optimize import fmin之后,就可以使用help(fmin)来查看fmin的帮助信息了。帮助信息中没有例子,但是给出了每一个参数的含义说明,这是调用函数时候的最有价值参考。
有源码研究癖好的,或者当你需要改进这些已经实现的算法的时候,可能需要查看optimize中的每种算法的源代码。在这里:https:/ / github. com/scipy/scipy/blob/master/scipy/optimize/optimize.py聪明的你肯定发现了,顺着这个链接往上一级、再往上一级,你会找到scipy的几乎所有源码!

8、Python无监督抽词 SEO如何快速正确分词

凝聚程度:两个字连续出现的概率并不是各自独立的程度。例如“上”出现的概率是1×10^-5,”床”出现的概率是1×10^-10,如果这两个字的凝聚程度低,则”上床”出现的概率应该和1×10^-15接近,但是事实上”上床”出现的概率在1×10^-11次方,远高于各自独立概率之积。所以我们可以认为“上床”是一个词。
左邻字集合熵:分出的词左边一个字的信息量,比如”巴掌”,基本只能用于”打巴掌”,“一巴掌”,“拍巴掌”,反之”过去”这个词,前面可以用“走过去”,“跑过去”,“爬过去”,“打过去”,“混过去”,“睡过去”,“死过去”,“飞过去”等等,信息熵就非常高。

9、Python是什么,在一家SEO培训机构公开课上听到的,Python对网站优化有什么好处?

主要是做数据分析,这家公司应该非常牛逼

与python做seo相关的知识