导航:首页 > 网络营销 > sem电子束直径

sem电子束直径

发布时间:2020-08-30 14:42:00

1、扫描电镜SEM/EDX测试的井深是多少?

````
应该是景深吧``

焦深计算公式
L= ±[(r/M)-d]/2α 其中:
L: 焦深
r: 显像管最小分辨距离
M:放大倍数
d:入射电子束直径
2α:物镜孔径角。
从上面的式子可以看出影响焦深的因素,其中隐含了工作距离w。物镜孔径角与工作距离和入射电子束直径有关。由于r(显像管的分辨率)和2α都是未知数,实际上不能计算。焦深也只是个人的视觉感受,还是直观的测量一下为好。

又查了资料``显像管最小分辨距离为0.22mm-0.3mm, 孔径角的典型数值为10-2—10-3rad.利用公式L= ±[(r/M)-d]/2α可以计算出在有效放大倍率下的焦深数据。设d=3纳米,孔径角2α=10-2 rad,r=0.3mm。计算焦深如下:
1000倍下为59.4微米。5000倍下为11.4微米。10000倍下为5.4微米。超过100000倍已经超过了有效放大倍率。不能计算。

2、有没有人懂SEM扫描电镜的,辐射大吗

电镜辐射来源主要源于,电子枪发射的电子束和电子束激发样品表面出来的各种信号。而电子束直径只有纳米到10纳米级别,因此产生的辐射很少很少。同时,电镜电子枪位置有大块铅块吸收辐射,样品仓由很厚的金属材料做成,因此对于电镜整体而言,几乎没有对外的辐射。
另外,需要提醒楼主的是,电镜虽然辐射不大,不过电镜样品千奇百怪,不免遇到一些有毒有害的物质材料,楼主需要做好保护措施(手套,口罩),既保护自己,又保护电镜和样品不受污染

3、电子扫描显微镜(SEM)的工作原理???

扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。

示意图:
http://www.science.globalsino.com/1/images/1science9682.jpg

4、FTIR和SEM是什么?

FTIR是指红外光谱仪器的第三代傅立叶变换红外吸收光谱仪(FTIR)。SEM是1965年发明的较现代的细胞生物学研究工具扫描电子显微镜。

5、SEM与TEM的区别

SEM,全称为扫描电子显微镜,又称扫描电镜,英文名Scanning Electronic Microscopy. TEM,全称为透射电子显微镜,又称透射电镜,英文名Transmission Electron Microscope.


区别:

SEM的样品中被激发出来的二次电子和背散射电子被收集而成像. TEM可以表征样品的质厚衬度,也可以表征样品的内部晶格结构。TEM的分辨率比SEM要高一些。

SEM样品要求不算严苛,而TEM样品观察的部分必须减薄到100nm厚度以下,一般做成直径3mm的片,然后去做离子减薄,或双喷(或者有厚度为20~40μm或者更少的薄区要求)。

TEM可以标定晶格常数,从而确定物相结构;SEM主要可以标定某一处的元素含量,但无法准确测定结构。

6、SEM和TEM区别

SEM,全称为扫描电子显微镜,又称扫描电镜,英文名Scanning
Electronic
Microscopy.
TEM,全称为透射电子显微镜,又称透射电镜,英文名Transmission
Electron
Microscope.
区别:
1.
SEM的样品中被激发出来的二次电子和背散射电子被收集而成像.
TEM可以表征样品的质厚衬度,也可以表征样品的内部晶格结构。TEM的分辨率比SEM要高一些。
2.
SEM样品要求不算严苛,而TEM样品观察的部分必须减薄到100nm厚度以下,一般做成直径3mm的片,然后去做离子减薄,或双喷(或者有厚度为20~40μm或者更少的薄区要求)。
3.
TEM可以标定晶格常数,从而确定物相结构;SEM主要可以标定某一处的元素含量,但无法准确测定结构。

7、SEM扫描电镜图怎么看,图上各参数都代表什么意思

1、放大率:

与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。

所以,SEM中,透镜与放大率无关。

2、场深:

在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。

3、作用体积:

电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。

4、工作距离:

工作距离指从物镜到样品最高点的垂直距离。

如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。

5、成象:

次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。

6、表面分析:

欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。

表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。

观察方法:

如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。

尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。

(7)sem电子束直径扩展资料:

SEM扫描电镜图的分析方法:

从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。

图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。

将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。

8、扫描电镜与透射电镜的区别?

1、结构差异:

主要体现在样品在电子束光路中的位置不同。透射电镜的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁透镜继续放大电子光束,最后投影在荧光屏幕上;扫描电镜的样品在电子束末端,电子源在样品上方发射的电子束,经过几级电磁透镜缩小,到达样品。当然后续的信号探侧处理系统的结构也会不同,但从基本物理原理上讲没什么实质性差别。

2、基本工作原理:

透射电镜:电子束在穿过样品时,会和样品中的原子发生散射,样品上某一点同时穿过的电子方向是不同,这样品上的这一点在物镜1-2倍焦距之间,这些电子通过过物镜放大后重新汇聚,形成该点一个放大的实像,这个和凸透镜成像原理相同。这里边有个反差形成机制理论比较深就不讲,但可以这么想象,如果样品内部是绝对均匀的物质,没有晶界,没有原子晶格结构,那么放大的图像也不会有任何反差,事实上这种物质不存在,所以才会有这种仪器存在的理由。

扫描电镜:电子束到达样品,激发样品中的二次电子,二次电子被探测器接收,通过信号处理并调制显示器上一个像素发光,由于电子束斑直径是纳米级别,而显示器的像素是100微米以上,这个100微米以上像素所发出的光,就代表样品上被电子束激发的区域所发出的光。实现样品上这个物点的放大。如果让电子束在样品的一定区域做光栅扫描,并且从几何排列上一一对应调制显示器的像素的亮度,便实现这个样品区域的放大成像。

3、对样品要求

(1)扫描电镜

SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法将特定剖面呈现出来,从而转化为可以观察的表面。这样的表面如果直接观察,看到的只有表面加工损伤,一般要利用不同的化学溶液进行择优腐蚀,才能产生有利于观察的衬度。不过腐蚀会使样品失去原结构的部分真实情况,同时引入部分人为的干扰,对样品中厚度极小的薄层来说,造成的误差更大。

(2)透射电镜

由于TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,例如存储器器件的TEM样品一般只能有10~100nm的厚度,这给TEM制样带来很大的难度。初学者在制样过程中用手工或者机械控制磨制的成品率不高,一旦过度削磨则使该样品报废。TEM制样的另一个问题是观测点的定位,一般的制样只能获得10mm量级的薄的观测范围,这在需要精确定位分析的时候,目标往往落在观测范围之外。目前比较理想的解决方法是通过聚焦离子束刻蚀(FIB)来进行精细加工。

(8)sem电子束直径扩展资料:

透射电子显微镜的成像原理 可分为三种情况:

(1)吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。

(2)衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射波的振幅分布不均匀,反映出晶体缺陷的分布。

(3)相位像:当样品薄至100Å以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。

与sem电子束直径相关的知识