导航:首页 > 网络营销 > temsem以及xrd相关设备原理

temsem以及xrd相关设备原理

发布时间:2020-08-18 00:24:20

1、TEM和SEM的工作原理差别?

1、扫描电子显微镜 SEM(scanning electron microscope)

(1)、扫描电子显微镜工作原理:
是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。
(2)扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动 (声子)、电子振荡 (等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对x射线的采集,可得到物质化学成分的信息。正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。

2、透射电镜TEM (transmission electron microscope)

(1)透射电镜工作原理:
是以电子束透过样品经过聚焦与放大后所产生的物像, 投射到荧光屏上或照相底片上进行观察。
(2)透射电镜的分辨率为0.1~0.2nm,放大倍数为几万~几十万倍。由于电子易散射或被物体吸收,故穿透力低,必须制备更薄的超薄切片(通常为50~100nm)。其制备过程与石蜡切片相似,但要求极严格。要在机体死亡后的数分钟钓取材,组织块要小(1立方毫米以内),常用戊二醛和饿酸进行双重固定树脂包埋,用特制的超薄切片机(ultramicrotome)切成超薄切片,再经醋酸铀和柠檬酸铅等进行电子染色。电子束投射到样品时,可随组织构成成分的密度不同而发生相应的电子发射,如电子束投射到质量大的结构时,电子被散射的多,因此投射到荧光屏上的电子少而呈暗像,电子照片上则呈黑色。称电子密度高(electron dense)。反之,则称为电子密度低(electron lucent)。

2、xrd原理、相关公式以及应用

原理:X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。
公式:满足衍射条件,可应用布拉格公式:2dsinθ=nλ
应用:已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。

3、XRD和TEM主要是用来表征材料什么性能的

用来表征材料内部分子结构和形态。

XRD 即X-ray diffraction 的缩写,X射线衍射,通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。

透射电子显微镜(英语:Transmission electron microscope,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2微米、光学显微镜下无法看清的结构,又称“亚显微结构”。

4、SEM、TEM、TG、XRD、AFM、红外光谱,这几个分别是测什么的?

测什么百度一下吧,应该都有详细的测试原理及项目。

区别应该是 SEM和TEM和AFM,越来越高级,放大倍数越来越高。XRD和红外光谱这两个是没什么关系的,xrd是测试晶体结构的,可以测试晶体结构的,对于可以看出你的材料是什么。红外是靠红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知液态水的红外光谱物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。l红外主要用于有机化合物的结构鉴定在有机化学、生物化学、药物学、环境科学等许多领域。

5、求大神帮解说一下什么是SEM XRD EDS 分析方法和原理 本人零基础 大体了解一下

SEM是扫描电子显微镜,最高可放大至20万倍左右,用二次电子成像的原理来观察某种物质的微观形貌。EDS是能谱仪,是每种元素对应的电子能不同,来鉴别元素,通常是和SEM结合使用,也就是说在SEM上安装EDS附件,在观看形貌时,选择一定区域用EDS打能谱,也就知道了该区域的元素组成。XRD是X射线衍射仪,其原理是高压下,阴极发出的电子形成高能电子束,轰击阳极靶材(通常是Cu),靶材的内部电子能量升高,被激发出来,当它回到基态的过程中,多余的能量以X射线、俄歇电子等形式释放出来。XRD收集的是其中的X射线,X射线扫到样品上,会根据布拉格方程产生衍射角,衍射峰。每种物质(不同样品)的衍射峰不同,因此通常用来鉴别物相,也会根据峰面积算半定量。

6、XRD、IR、SEM、EDS及紫外可见吸收的测试原理及具体分析步骤(材料测试技术里面的)

SEM:材料的表面形貌,形貌特征。配合EDX可以获得材料的元素组成信息
TEM:材料的表面形貌,结晶性。配合EDX可以获得材料的元素组成
FTIR:主要用于测试高分子有机材料,确定不同高分子键的存在,确定材料的结构。如单键,双键等等
Raman:通过测定转动能及和振动能及,用来测定材料的结构。
CV:CV曲线可以测试得到很多信息,比如所需电沉积电压,电流,以及半导体行业可以得到直流偏压
EIS:EIS就是电化学交流阻抗谱测试可以得到电极电位,阻抗信息,从而模拟出系统内在串联电阻,并联电阻和电容相关信息
BET:主要是测试材料比表面积的,可以得到材料的比表面积信息。
XRD:主要是测试材料的物性,晶型的。高级的XRD还可以测试材料不同晶型的组分。
质谱:主要用于鉴定材料的化学成分,包括液相质谱,气象质谱

7、推荐一本书,关于 XRD,XPS,TEM,SEM,UV,等。

刘粤惠、刘平安,X射线衍射分析原理及应用,化学工业出版社,北京,2003 ;
祁景王,X射线结构分析,同济大学出版社,上海,2003;
黄量,于德泉,紫外光谱在有机化学中的应用,北京:科学出版社,2000;

关于“XRD,XPS,TEM,SEM”方面的书籍、网络资料,你可以使用“XRD,XPS,TEM,SEM,书”的关键词,在百度或谷歌中搜索,能够得到许多有用的免费的有关原理和解析数据的文档或资料。

8、简述利用SEM、TEM、FTIR、Raman、CV、EIS、BET、XRD和质谱可获得什么信息?

SEM:材料的表面形貌,形貌特征。配合EDX可以获得材料的元素组成信息
TEM:材料的表面形貌,结晶性。配合EDX可以获得材料的元素组成
FTIR:主要用于测试高分子有机材料,确定不同高分子键的存在,确定材料的结构。如单键,双键等等
Raman:通过测定转动能及和振动能及,用来测定材料的结构。
CV:CV曲线可以测试得到很多信息,比如所需电沉积电压,电流,以及半导体行业可以得到直流偏压
EIS:EIS就是电化学交流阻抗谱测试可以得到电极电位,阻抗信息,从而模拟出系统内在串联电阻,并联电阻和电容相关信息
BET:主要是测试材料比表面积的,可以得到材料的比表面积信息。
XRD:主要是测试材料的物性,晶型的。高级的XRD还可以测试材料不同晶型的组分。
质谱:主要用于鉴定材料的化学成分,包括液相质谱,气象质谱

9、SEM、TEM、XRD、AES、STM、AFM的区别

SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、

一、名称不同

1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。

2、TEM,英文全称:,中文称:透射电子显微镜。

3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。

4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。

5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。

6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。

二、工作原理不同

1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。

2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。

物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。

3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。

4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。

5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。

电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。

6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。

三、不同的功能

1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。

扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。

样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。

2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。

所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。

3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。

特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。

4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。

俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。

5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。

STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。

6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。

与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。

扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。

10、SEM、TEM、XRD原理及区别

x

与temsem以及xrd相关设备原理相关的知识