1、管理学原理课实验报告要求搜一个组织分析其管理五职能,怎么写啊???
管理的五职能是:计划、组织、指挥、协调、控制
你可以根据你自己常用的熟悉的领域,如超市
在网上搜一下
怎样计划采买
怎样组织货源和安排人力
指挥进货出货和运输以及顾客
协调主要看有哪些规定来应对改变
控制是无处不在的:包括人和设备
2、实验报告中的“分析与讨论”应该怎么写?
1:完成试验报告过程中遇到的困难有哪些
2:如何解决这些这些问题
3:报告的优缺点
总结:对本次试验的心得体会,思考和建议。
3、实验报告的实验数据分析与处理怎么写?
根据你的实验数据根据实验相关的一些定理、公式进行计算得出数据结果,然后根据算出的数据结果进行分析,论证实验成功或失败,或者得出实验条件下产生的某种现象或结果
4、实验报告的实验结果讨论怎么写
如何写实验报告
实验报告是人们对某一情况、事件、经验或问题经过深入细致的调查研究而写成的书面报告,它反映了人们通过调查研究找出某些事物的规律,并提出相应的措施和建议,是社会调查实践活动的成果。学习撰写实验报告,有助于同学们进一步认识社会,参与社会,把所学知识与社会实践结合起来,全面提高自身素质。
怎样撰写实验报告
[例题]
以“发扬勤俭美德,树立正确的消费观”为主题,以周围学生调查对象,根据他们的生活态度和表现,写一份调查报告,题目自拟。
撰写实验报告,要做到以下几点:
1、着力点要明确:
首先,要深入调查,占有材料。这是写好实验报告的基础和先决条件。为此,就应该亲自了解第一手材料。既要了解“面”上的材料,又要了解“点”上的材料;既要了解正面材料,又要了解反而材料;既要了解现实材料,又要了解历史材料。如上例中,同学们就要认真回顾平时手头搜集到的有关于“勤俭是美德,是事业成功的重要因素,奢侈浪费导致事业失败”方面的详细资料。
其次,要认真分析,找出规律。这是实验的目的。在占有大量材料的基础上,要“去粗取精、去伪存真、由此及彼、由表及里”地总结出事物的规律。此例中,除了要有具体的事例或数据外,还要对占有的资料分门别类加以总结,如以“盲目攀比,铺张浪费”、“勤劳节俭、合理消费”为门类加以归纳,从中找出规律性。
再次,要立场正确,观点鲜明。实验报告要站在客观的立场上,透过现象看本质,对事物作出正确的判断和评价。如上例中,实验的目的是帮助学生树立勤俭节约的美德,结合学生的生活实际,解决乱花钱、互相攀比、超前消费等不良习惯和问题。
最后,要概括事实,有叙有议。不能光罗列现象,而且要适当地进行分析、议论,阐述观点。如上例,在做到有事例和数据的基础上,运用所学的社会原理进行理性分析,分析要观点全面。
2、报告格式要规范
(1)标题。
①单标题,如上例标题可拟成:《中学生合理消费的调查报告》,以清楚交代调查的内容。
②双标题,可拟成《合理消费----xx中学调查报告》
③标题不用“调查报告”字样,也可用一般文章题目形式,如可拟成《中学生应该养成合理消费的好习惯》。
(2)前言。这部分内容,往往对实验的时间、地点、对象、范围作必要的交代,总领全文。如上例中实验地点可以是xx中学整所学校,也可以将整个年级作为调查对象,还可以随机抽查的学生为实验对象,调查内容主要是学生的生活态度和表现两个方面。
(3)主体。主体是具体叙述实验内容、列举事例和数据并做恰当的议论和分析,概括出经验或规律,是表现实验报告主旨的关键部分。在材料的安排上,要把调查得来的大量材料归纳整理出若干条目,采用小标题式写法,要注意层次清楚,条理分明。有的可按问题的几个方面或几个问题并列地安排材料,即采用“横式结构?;有的可按事物发展过程的顺序来写,即采用?纵式结构”。
(4)结尾。结尾是实验报告的结束语,也作归纳性说明或总结全篇的主要观点,也可指出存在的问题,提出建议。
5、实验报告里的实验分析怎么写
其实很简单,首先实验结果与分析就是把你实验得到的数据做一个表格 参照书上的表格 然后用相应的公式计算 过程也要写上 最后再算一个试验误差就可以了,结论与体会就是你可以自己总结 也可以看课本最开始的实验目的 要学会什么什么 你就写学会了什么什么 然后再加上一段什么由于实验过程的人为以及系统误差 本次实验误差较大或者较小 下次实验注意什么耐心啊之类的。
根据你的实验数据根据实验相关的一些定理,公式进行计算得出数据结果,然后根据算出的数据结果进行分析,论证实验成功或失败,或者得出实验条件下产生的某种现象或结果
实验报告
实验报告是把实验的目的,方法,过程,结果等记录下来,经过整理,写成的书面汇报。
应用写作给出的定义如下
科技实验报告是描述,记录某个科研课题过程和结果的一种科技应用文体。撰写实验报告是科技实验工作不可缺少的重要环节。虽然实验报告与科技论文一样都以文字形式阐明了科学研究的成果,但二者在内容和表达方式上仍有所差别。科技论文一般是把成功的实验结果作为论证科学观点的根据。实验报告则客观地记录实验的过程和结果,着重告知一项科学事实,不夹带实验者的主观看法。
数据分析
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
拓展资料
标准的心理学实验报告或期刊论文由七个部分组成:题目和作者,摘要,引言,方法,结果,讨论以及参考文献。每一部分都有各自的写作技巧。
(一)题目和作者
题目是为了让读者了解一篇文章的基本内容,因此必须简洁明了。它应该是对论文的主要观点的概括性总结,包括所研究的变量(即自变量和因变量)以及它们之间的相互关系,如“字母大小写对记忆速度的影响”,就是一个较好的题目,它表达了重要的信息。题目也可以是一个理论观点。应避免使用含义笼统的词语,这只会增加题目的长度并误导索引者。诸如“方法”和“研究结果”这样的文字,以及“一项……的研究”或“……的实验研究”之类的繁琐用词都不宜出现在题目中。而且,题目中还要避免使用缩略词,应给出术语的全名以方便读者对论文进行正确而完整的检索。APA格式所规定的题目长度为10~12个单词;中国心理学会规定的中文期刊的题目则一般不宜超过20个汉字。
论文的作者是那些对发表的文章具有主要贡献,并对数据,概念和结果解释负责的人。作者中既包括论文的撰写者,也包括对研究具有实质性贡献的人,如直接参加了研究的全部或主要部分的工作。
(二)摘要
摘要是对论文内容的简短而全面的概括,能够让读者迅速总览论文的内容。并且,与题目一样,摘要也是各种数据库中常见的检索对象。APA(1984)告诫所有作者:“一旦刊登在期刊上,你的摘要就将作为印刷版或电子版的摘要总集的一部分开始其活跃而长久的生涯”,因此一个好的摘要是整篇论文中最重要的组成部分。摘要既要具有高度的信息浓缩性,又要具有可读性,还要组织良好,篇幅简洁且独立成篇。一篇好的摘要应该具备以下特点。(1)准确性。摘要应能准确反映论文的目的和内容,不应包含论文中没有出现的信息。(2)独立性。摘要应自成一体,独立成篇,对所有的缩写,省略语和特殊术语作出说明。(3)简练而具体。摘要中的每个句子都要能最大限度地提供信息,并尽可能地简洁。APA格式规定的摘要长度不能超过120个单词;中国心理学会规定的中文期刊的摘要则一般不超过300个汉字,而且英文摘要应是中文摘要的转译,需要简洁,准确地将文意译出。摘要应以最重要的信息开头,可以是目的或主题,也可以是结果和结论。摘要中只需包含4个或5个最重要的观点,结果或含意。
一篇实验报告的摘要应说明:要研究的问题,如果可能的话用一句话来表达;被试,详细说明相关特性,如数量,类型,年龄,性别,种类等;实验方法,包括仪器,数据收集程序,完整的测验名称,使用的任何药剂的剂量和方法;结果,包括统计显著性水平;结论,含意或应用。而报告的主体应该是对摘要的扩展(这就是为什么大部分摘要都要放在最后写的原因)。
(三)引言
引言往往包括提出问题,说明研究背景,阐明研究目的和理论基础这三部分内容。
1.提出问题
在正文的开始部分用一段文字提出所要研究的具体问题,并描述研究策略。在开始着手写引言时,需要考虑:所要研究问题的重要性如何?假设和实验设计与该问题之间具有怎样的关系?该研究有何理论意义?与同领域内先前研究有何关系?所要检验的理论问题是什么?如何解决?好的引言会用一段或两段文字来回答这些问题,通过总结相关论点和数据,清楚地告诉读者做了什么以及为什么这么做。
2.说明背景
对以往的相关文献进行讨论,但并不是毫无遗漏地进行历史性回顾。要假定读者对该领域具有一定了解,不需要向他们作完整而冗长的说明。也就是说,在对先前的研究工作进行学术性回顾时,应只引用和参考与具体问题相关的研究工作,而不要引用和参考无关或只具有一般性意义的研究工作。需要总结先前研究,但应避免无关紧要的细节描述,要强调相关的发现,相关的方法论问题和主要的结论。在介绍别人的研究时,要始终让读者觉得你正在建立自己的研究题目。同时,还应公平地对待尚有争议的问题。不管个人的观点如何,在陈述一个争议性问题时,应避免敌意和带有个人偏向的陈述。
3.阐明目的和理论基础
和说明了背景情况后,接下来就要说明具体的研究。在引言的最后一段,要定义变量并对研究的假设作一个正式的说明,这些有助于增加论文的清晰度。在写引言的结束部分时,要记住以下问题:我打算操纵什么变量?期望得到什么结果以及为什么我期望这样的结果?“为什么我期望它们”这个问题背后的逻辑应该是明确的,并且还要清楚地说明每个假设的理论基础。至此,应该使读者认为你的研究正在填补一个重要的空白。
(四)方法
方法部分要详细描述研究是如何进行的,说明你对变量的处理过程。这部分一定要写得清楚,完整,尽量告诉读者他们需要知道的每件事。这样的描述可以使读者对你的方法的适当性以及你的结果的可靠性和有效性(即信度和效度)进行评价,也可以使感兴趣的研究者能够重复这个研究。通常方法部分被分成三个带标题的层次,这些层次包括被试,仪器(或材料)及程序。
1.被试
就心理学的理论和实践而言,对研究被试作恰当的说明非常重要,特别是评估研究结果(在不同的组间作比较),概括研究发现,比较重复研究,文献综述和分析二手数据时更是如此。对样本应作充分的描述,并且样本应具有代表性(如果不具代表性,应说明原因)。结论和解释都不应超出样本所能代表的总体的范围。当被试是人时,应报告抽样和分组程序,被试的性别和年龄,被试的总数目以及分派到每个具体实验条件下的具体数目。如果由于某种原因部分被试没有完成实验,中途退出或被淘汰,必须加以说明并解释他们没有继续实验的原因。对于动物被试,应报告它们的种类,变化或其他具体证明资料,数量,性征,重量和生理状况等重要信息,以便他人能够成功地重复该研究。
2.仪器
该部分简短描述实验中所使用的仪器或材料以及它们在实验中的功用。标准实验设备,如家具,秒表或屏幕,通常不需要进行详细描述。应对特殊设备的型号,供应商的名字和地点作一定的说明。复杂设备可能需要使用图纸或照片加以说明,其细节则可在附录中进行详细描述。
3.程序
该部分说明研究过程中的每个步骤,包括对被试的指导语,分组情况,具体实验操作,以及对实验设计中的随机化,抵消平衡和其他控制特点的描述。除非指导语是非同寻常的或者其本身是实验操作的构成部分,才需要逐字写出,否则只需对指导语作简要解释即可。在此部分中,通常先讲述实验设计,然后介绍指导语(如果被试是人),此外还要让读者了解实验的各个阶段。
概括而言,方法部分应该足够详细地告诉读者你做了什么以及怎样做的,以便读者能够重复你所进行的研究。
(五)结果
对数据的收集过程及所使用的统计或数据分析处理进行总结,这是结果部分的任务。在该部分中,你要向读者说明主要的结果或发现,尽量详细报告数据以验证结论。要报告所有相关的结果,包括那些与假设相矛盾的结果。除非是个案设计或单样本研究,一般不需要报告单个被试的数据或原始数据。而且,在这一部分讨论结果的潜在意义是不恰当的。
另外,应选择能够清楚而又经济地说明数据的报告形式。表格通常能提供精确的数值,如果组织得好的话,还能够使复杂的数据和分析一目了然(如方差分析表)。插图能够吸引读者的目光,更好地解释复杂的关系和整体的比较。但插图没有表格精确,有时容易产生误导。例如,弗罗斯特,卡茨和本廷(Frost,Katz & Bentin,1987)做了比较词汇确定和命名的实验,结果显示了人们对高频英语单词和非词的反应时。如果以不同的单位来对其研究结果作图的话,我们会得到以下的结果,如图32所示。乍一看,这两个图很不同,前者似乎显示词汇确定和命名没有差异,而后者则差异显著。实际上两个图在视觉上的差别是由于不同的单位造成的,前者使用的是秒,而后者使用的是毫秒。很明显,以秒为单位作图就会产生误导。可见,作图的方式可能突出或掩盖实验的结果。
6、求一篇数值分析实验报告
数值分析实验报告
姓名: 学号:
实验1:
1. 实验项目的性质和任务
通过上机实验,对病态问题、线性方程组求解和函数的数值逼近方法有一个初步理解。
2.教学内容和要求
1)对高阶多多项式
编程求下面方程的解
并绘图演示方程的解与扰动量 的关系。(实验2.6)
2)对 ,生成对应的Hilbert矩阵,计算矩阵的条件数;通过先确定解获得常向量b的方法,确定方程组
最后,用矩阵分解方法求解方程组,并分析计算结果。(第三章,实验题4)
3)对函数
的Chebyshev点
编程进行Lagrange插值,并分析插值结果。(第四章 实验1)
项目涉及核心知识点
病态方程求解、矩阵分解和方程组求解、Lagrange插值。
重点与难点
算法设计和matlab编程。
1)a.实验方案:
先创建一个20*50的零矩阵X,然后利用Matlab中的roots()和poly()函数将50个不同的ess扰动值所产生的50个解向量分别存入X矩阵中。然后再将ess向量分别和X的20个行向量绘图。即可直观的看出充分小的扰动值会产生非常大的偏差。即证明了这个问题的病态性。
b.编写程序:
>> X=zeros(20,50);
>> ve=zeros(1,21);
>> ess=linspace(0,0.00001,50);k=1;
>> while k<=50
ve(2)=ess(k);
X(1:20,k)=roots(poly(1:20)+ve);
k=k+1;
end
>> m=1;
>> while m<=20
figure(m),plot(ess,X(m,:));
m=m+1;
end
C.实验结果分析和拓展
由上面的实验结果可以看出一个充分小的扰动值可以让方程的解产生非常大的偏差,而且这个偏差随着ess的变大偏差也随即变大。但可以看出在相对小的根处根比较稳定,也就是说这些根关于ess并不敏感,而在较大根处时,根很不稳定,即这些解关于ess的变化是敏感的。这就说明了这个问题本身就是一个病态问题,与算法好坏无关。
若扰动在x^18处,只要把程序中的ve(2)改为ve(3)即可,其图形和此类似。
d.实验结论:
高次多项式扰动求方程解问题是一个病态问题。
2)a.实验方案:
先创建一个20*20的零矩阵A,再通过给定解x和Hilbert矩阵求出列向量b,然后通过LU分解法求出方程HX=b的解X,然后将x-X’这一行向量存入A矩阵中,形成一循环,最后,如果Hilbert矩阵非病态的话,则可输出一个20*20的对角矩阵。
b.编写程序:
>> n=2;
>> A=zeros(20,20);
>> while n<=20
x=1:n;
H=hilb(n);
b=H*x';
[L U]=lu(H);
y=L\b;X=U\y;
A(n,1:n)=x-X';
n=n+1;
end
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 4.455948e-017.
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 7.948463e-017.
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.798429e-016.
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 7.626119e-018.
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 6.040620e-017.
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 5.444860e-017.
>> A
A =
1.0e+003 *
Columns 1 through 10
0 0 0 0 0 0 0 0 0 0
-0.0000 0.0000 0 0 0 0 0 0 0 0
-0.0000 0.0000 -0.0000 0 0 0 0 0 0 0
-0.0000 0.0000 -0.0000 0.0000 0 0 0 0 0 0
0.0000 -0.0000 0.0000 -0.0000 0.0000 0 0 0 0 0
0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0 0 0 0
0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 0 0 0
-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 0 0
-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0
-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000
-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000
-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0001 -0.0003 0.0006 -0.0007 0.0005
0.0000 -0.0000 0.0000 -0.0001 0.0005 -0.0027 0.0096 -0.0223 0.0348 -0.0361
0.0000 -0.0000 0.0000 -0.0004 0.0030 -0.0098 0.0080 0.0593 -0.2570 0.5154
0.0000 -0.0000 0.0000 -0.0001 0.0005 -0.0029 0.0095 -0.0171 0.0086 0.0347
0.0000 -0.0000 0.0000 -0.0000 0.0003 -0.0016 0.0059 -0.0133 0.0145 0.0094
0.0000 -0.0000 0.0000 -0.0001 0.0009 -0.0042 0.0118 -0.0182 0.0082 0.0185
0.0000 0.0000 -0.0000 0.0002 -0.0027 0.0187 -0.0762 0.1806 -0.2249 0.0813
0.0000 0.0000 -0.0000 0.0001 -0.0017 0.0120 -0.0497 0.1224 -0.1699 0.1064
0.0000 -0.0000 0.0000 -0.0003 0.0028 -0.0137 0.0371 -0.0464 -0.0164 0.1243
Columns 11 through 20
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
-0.0000 0 0 0 0 0 0 0 0 0
-0.0002 0.0000 0 0 0 0 0 0 0 0
0.0238 -0.0091 0.0015 0 0 0 0 0 0 0
-0.6091 0.4336 -0.1727 0.0296 0 0 0 0 0 0
-0.0944 0.1170 -0.0824 0.0318 -0.0053 0 0 0 0 0
-0.0624 0.1107 -0.1110 0.0674 -0.0232 0.0035 0 0 0 0
-0.0289 0.0059 0.0103 0.0082 -0.0263 0.0181 -0.0042 0 0 0
0.0524 0.1690 -0.3743 -0.1862 1.0944 -1.2171 0.6004 -0.1156 0 0
-0.0327 0.1652 -0.3051 -0.0485 0.7195 -0.9387 0.5714 -0.1699 0.0191 0
-0.1120 -0.0421 0.0883 0.0222 -0.0628 0.1013 -0.2902 0.3783 -0.2173 0.0469
C.实验结果分析和拓展:
当Hilbert矩阵的阶数比较小时,其解X和给定解x偏差不大;但当Hilbert矩阵的阶数变大时,偏差就会变大。这就说明了Hilbert矩阵是一组病态矩阵,从Matlab运行中的Warning可以看出,其条件数相当大。
d.实验结论:
Hilbert矩阵是一组病态矩阵,用它来做线性方程的系数矩阵时,往往会得出与精确解相差较大的解。
3)a.实验方案:
在区间【-1,1】上取点,先按Chebyshev取点,即xk=cos((2k-1)pi/2/(n+1))取点,然后再进行拉格朗日插值,绘出图和插值点。而后再进行均匀取点再拉格朗日插值。将两种插值结果进行比较。
b.编程实现:
for a=1:10
b=a+1;
for c=1:b
X(c)=cos((2*c-1)*pi/2/(a+1));
Y(c)=1/(1+25*X(c)^2);
x=-1:0.05:1;
end
m=length(x);
for i=1:m
z=x(i);s=0;
for k=1:b
L=1;
for j=1:b
if j~=k
L=L*(z-X(j))/(X(k)-X(j));
end
end
s=s+L*Y(k);
end
y(i)=s;
end
figure(1)
plot(x,y,'r');
hold on;
figure(2)
plot(X,Y,'b*')
hold on
end
for a=2:2:10
b=a+1;
X=linspace(-1,1,b);
Y=1./(1+25*X.^2);
x=-1:0.05:1;
m=length(x);
for i=1:m
z=x(i);s=0;
for k=1:b
L=1;
for j=1:b
if j~=k
L=L*(z-X(j))/(X(k)-X(j));
end
end
s=s+L*Y(k);
end
y(i)=s;
end
figure(1)
plot(x,y,'r');
hold on;
figure(2)
plot(X,Y,'b*')
hold on
end
C.实验结果分析及拓展:
均匀插值时,当n比较大时,就会出现多项式插值的Runge现象,即当插值节点的个数n增加时,Lagrange插值多项式对原来函数的近似并非越来越好。当进行非等距节点插值时,其近似效果明显要比均匀插值是要好。原因是非均匀插值时,在远离原点处的插值节点比较密集,所以其插值近似效果要比均匀插值时的效果要好。
d.实验结论:
利用Chebyshev点进行非等距节点插值的对原函数的近似效果要比均匀节点插值的好。