导航:首页 > 网络营销 > 混凝土sem

混凝土sem

发布时间:2020-08-08 04:09:46

1、哪位大神可以清楚的告诉我SEM,EDS,XRD的区别以及各自的应用

SEM,EDS,XRD的区别,SEM是扫描电镜,EDS是扫描电镜上配搭的一个用于微区分析成分的配件——能谱仪。能谱仪(EDS,Energy Dispersive Spectrometer)是用来对材料微区成分元素种类与含量分析,配合扫描电子显微镜与透射电子显微镜的使用。XRD是X射线衍射仪,是用于物相分析的检测设备。
扫描电子显微镜(scanning electron microscope,SEM,图2-17、18、19)于20世纪60年 代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样 品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子 束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束 的轰击下发出次级电子信号。 目前扫描电镜的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。
EDS的原理是各种元素具有自己的X射线特征波长,特征波长的大小则取决于能级跃迁过程中释放出的特征能量△E,能谱仪就是利用不同元素X射线光子特征能量不同这一特点来进行成分分析的。使用范围:
1、高分子、陶瓷、混凝土、生物、矿物、纤维等无机或有机固体材料分析;
2、金属材料的相分析、成分分析和夹杂物形态成分的鉴定;
3、可对固体材料的表面涂层、镀层进行分析,如:金属化膜表面镀层的检测;
4、金银饰品、宝石首饰的鉴别,考古和文物鉴定,以及刑侦鉴定等领域;
5、进行材料表面微区成分的定性和定量分析,在材料表面做元素的面、线、点分布分析。
X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析。广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。

2、混凝土受集中荷载作用出为什么要预埋钢板

用预埋钢板是为了将集中载荷分散均布在预埋钢板所在的区域。是因为混凝土结构抗承载力好但局部承载力和抗冲击力差。在混凝土施工中经常遇到。例如桥墩施工完了,要在上面做盖梁,做盖梁要搭设支架。搭设支架有多种方法,有一种方法就是在桥墩两侧预埋钢板,等到要进行盖梁施工时,将首先预埋的钢板接出来,做成外延支撑,然后就可以在这些支撑上搭设支架了。

混凝土在荷载作用下与非荷载作用下均会产生变形。当变形达到一定水平时,非荷载下的变形一般表现为收缩,收缩较大并受到约束时将产生裂缝;荷载作用下的变形分为短期荷载作用下的挠度变形及长期荷载作用下的变形——徐变。
混凝土结构在非荷载作用下的裂缝分类包括:
水泥化学收缩、混凝土自收缩、塑性收缩裂缝、沉降裂缝、干缩裂缝、碳化收缩、温度裂缝、沉陷裂缝、钢筋锈蚀引起的裂缝以及碱骨料反应等。
1、 水泥化学收缩
水泥在水化过程中,熟料矿物转变为水化产物,固相体积增加,但水泥水化产物的固体体积,比反应前水泥-水体系的总体积减小。由此产生的体积减缩称为水泥化学收缩。化学收缩的幅度一般为7%。水泥的化学收缩贯穿于水泥水化的全过程,且正比于水泥水化的程度。主要在早期28d。水泥化学收缩特点是不能恢复,对混凝土结构强度没有破坏作用,但在混凝土内部可能产生微细裂缝。
在硬化混凝土的结构形成、硬化过程中,水泥浆体产生的化学收缩受到骨料的阻碍,因此,混凝土的收缩量较水泥浆体低得多。由于骨料的阻碍,水泥浆体在骨料-水泥石界面产生收缩,导致界面为混凝土最薄弱环节。硬化混凝土在未受荷载时,体内即存在着大量的微孔隙、裂缝。图1展示了硬化水泥浆体微观形貌,扫描电镜SEM表明其内部存在大量微孔隙。
2、混凝土自收缩
混凝土的自收缩是指混凝土进入硬化阶段后,即便是在保持恒温、与外界无水分交换的条件下,混凝土宏观体积亦将逐渐减少。混凝土自收缩主要是由水泥水化时矿物组分与混凝土中的水分结合形成水化产物导致。由此引起混凝土内部自由水分减少、从而产生毛细管张力造成体积收缩。自收缩在混凝土内部相当均匀的发生。
自收缩对于现代混凝土具有重要意义。高性能混凝土如高强混凝土存在的主要问题之一是混凝土的自收缩。由于内部干燥失水导致高性能混凝土因自收缩而产生裂缝较为普遍。由于混凝土结构相当密实,以至于外部水分难以进入混凝土内部补充水分,可能产生即使采用水养护条件,但是混凝土内部仍然处于干燥状态的情况。
3、塑性收缩裂缝
塑性收缩是指混凝土在终凝前因水分蒸发速率过大而在混凝土表面产生的收缩裂缝。无论是新拌混凝土还是硬化混凝土,置放于干燥环境中时,混凝土中的水分将产生蒸发、干燥。新拌混凝土由于泌水以及水分的蒸发效应,体内逐渐形成一些毛细通道,当表层混凝土水分蒸发后在混凝土表面形成毛细管凹液面,随着水分的降低,毛细管凹液面产生的表面张力导致混凝土体积产生收缩。由于此时混凝土已初步凝结硬化、本体失去塑性变形能力而强度极低,无法抵抗体积收缩,因此产生塑性开裂。
塑性收缩裂缝的特点是:裂缝的走向具有随机性状,呈现龟裂状形态。塑性收缩裂缝一般在混凝土水分较多、日光暴晒、干热、大风天气出现,裂缝多呈中间宽、两端细且长短不一,互不连贯状态。较短的裂缝一般长20~750px,较长的裂缝可达2~3mm,宽1~5mm。深度一般不大,但薄板结构可能贯穿。
影响混凝土塑性收缩开裂的主要因素有水灰比、养护条件:包括环境温度、相对湿度以及风速等。
主要预防措施:严格控制水灰比。
4、沉降裂缝
沉降裂缝是指混凝土在浇注以后,产生离析:骨料趋于下沉,而水则趋于上浮,水分上升形成在混凝土表面的泌水,若水分的上升遇到钢筋或粗骨料阻碍,将积聚于钢筋或骨料下部形成高水灰比区域即所谓水囊,混凝土的沉降因受到钢筋限制收缩时,沿钢筋形成开裂。在大厚度的梁-板构件中,混凝土的塑性沉降受到模板或顶部钢筋的抑制会形成裂缝。
沉降裂缝一般发生在混凝土浇筑后数小时内。混凝土浇筑速度过快时易于产生沉降裂缝。混凝土施工规范规定了混凝土的浇筑速度不宜过快,其目的是防止混凝土产生沉降裂缝。
5、干缩裂缝
随着周围工作环境湿度的变化,混凝土将产生干湿变形,表现为干缩湿胀。
当混凝土在水中硬化时,体积产生轻微膨胀,这是由于凝胶体中胶体粒子的吸附水膜增厚,胶体粒子间的距离增大所致。混凝土吸水产生的微膨胀量很小,对混凝土性能一般无不利影响。
混凝土在干燥环境中的失水将导致混凝土产生收缩。若混凝土置于不饱和空气中,因水分散失将引起体积减缩。水泥凝胶颗粒的吸附水发生部分蒸发,凝胶体因失水将产生不可逆干缩。
表面物理化学young公式表明:毛细孔径越细,产生收缩的表面张力越大。混凝土是多孔体系。随混凝土水分蒸发,不同孔径内水分的蒸发产生的表面张力令混凝土在不同阶段产生不同的收缩。干缩裂缝的产生原因:系混凝土内外水分蒸发速率不同引起:混凝土表面暴露于干燥空气中,水分蒸发快,产生毛细张力、变形大,内部湿度变化较小变形较小,对表面干缩变形产生约束,形成较大拉应力而产生裂缝。环境相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产生。干缩裂缝出现在混凝土养护结束后的一段时间。
大面积混凝土工程,若不采取措施,每隔3~5m即产生一条裂缝,此现象为典型的干缩裂缝行为。混凝土体积变化受到约束时,如浇筑在老混凝土或坚硬岩基上的新混凝土、两端固定梁、高配筋率梁等,都可能产生裂缝。干缩裂缝系由外向内发展,多为表面性的平行线状或网状浅细裂缝,宽度多在0.05~0.2mm之间,但有时裂缝宽度也会很大,甚至会贯穿整个构件。大体积混凝土中平面部位多见,较薄的梁板中多沿其短向分布。
干缩裂缝是混凝土工程中常见而且影响比较大的一种裂缝形式。干缩裂缝降低了混凝土的抗渗性,易于引起钢筋的锈蚀,降低混凝土的耐久性。干缩裂缝对于民用建筑工程的使用性能有一定影响,可能影响建筑物的抗渗性,对建筑物的外部观感影响较大。对于道路工程,在荷载的交替作用下,在干缩裂缝处易于诱发结构混凝土破坏。
混凝土干缩影响因素:水泥品种、水泥用量、细度及品种。
减少干缩的材料为减缩剂。减缩剂可以有效减少干缩裂缝。
6.混凝土碳化收缩
在有水分条件下,水泥的水化产物氢氧化钙与大气中的二氧化碳发生化学反应,生成碳酸钙-碳化。碳化对于混凝土具有三种效应:碳化使混凝土产生收缩;碳化使混凝土表面密实、局部硬化,在无损检测技术中是影响回弹检测的主要因素之一;碱度降低导致钢筋锈蚀。
碳化速度取决于混凝土的密实度、水泥用量、介质的相对湿度以及二氧化碳的浓度。碳化作用只有在适中的湿度(约50%)才会较快地进行。
7.混凝土的温度裂缝
水泥水化过程中, 产生大量的水化热:当水泥用量在350~550 kg/m3,每立方米混凝土将释放出17500~27500kJ的热量,从而使混凝土内部温度升达70℃左右甚至更高。由于混凝土是热的不良导体,当混凝土的体积较大时,水化热积聚在混凝土内部不易散发,导致内部温度急剧上升,而混凝土表面散热较快,从而形成内外较大温差。较大的温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力(实践证明当混凝土温差达到25℃~26℃时,混凝土内便会产生大致在10MPa左右的拉应力)。当拉应力超过混凝土的抗拉强度极限时,混凝土表面将产生裂缝。
温度裂缝产生原因:
(1)大体积混凝土水化热引起的内外温差
(2)在拆模前后,若表面温度降低很快,造成温度陡降,形成的温差将导致裂缝的产生。
(3)当混凝土内部达到最高温度后,热量逐渐散发而达到使用温度或最低温度,它们与最高温度的差值为内部温差。
三种温差都会产生温度裂缝。水化热引起的内外温差(1)是温度裂缝产生主要原因。
温差裂缝(2)多发生在混凝土施工中后期。在混凝土的施工中当温差变化较大,或者是混凝土受到寒潮的袭击等,会导致混凝土表面温度急剧下降,而产生收缩,表面收缩的混凝土受内部混凝土的约束,将产生很大的拉应力而产生裂缝。气温的降低将在混凝土表面引起拉应力,当拉应力超出混凝土的抗裂能力时,即会出现裂缝。混凝土的内部湿度变化很小,但表面湿度可能变化较大或发生剧烈变化:如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。
温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接近平行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显,冬季较宽,夏季较窄。高温膨胀引起的混凝土温度裂缝是通常中间粗两端细,而干缩裂缝的粗细变化不太明显。
温度应力的形成过程分为三个阶段:
早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。
中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止。
晚期:混凝土完全冷却以后的时期。

3、求英语翻译高手!

Along with sail across ocean big bridge, sea, the building builds more and more, sea work's enring sex problem of the concrete seems to be very seriously, common of the examination means is internal to concrete to decay a circumstance to hard to do a precision to examine.This text scans adoption the electronic microscope(SEM), X shoot line develop to shoot analysis etc. the advanced technique carries on tiny view analysis to the concrete internal structure, to the concrete is under the standard appearance, the sea water moderate a sea water jelly to melt a pair of factor functions to descend to protect a circumstance for a month, water which analyzes under the different condition turns an outcome;Analyze chlorine salt, magnesium salt, vitriol, the carbonate possible occurrence for etc. to decay concrete respectively of respond and decay mechanism, it is to the Si ash gypsum(THa) and the born circumstance of the Friedels salt(F'S) to carry on point analysis particularly.This time experiment contrasts adoption experimental methods, prepare common concrete(OPC) and lead annoy in the meantime concrete(APC) and three mix intos(powder ash from stove, Si ash, mineral resie) concrete(HPC) carry on to contrast sex experiment, put forward the concrete which has high and enring, anti- causticity finally.

4、废弃混凝土作为CO2气体的吸收媒介,谁有关于这方面的资料!谢谢了。废弃混凝土主要成分是碳酸钙,如何能吸

《粉煤灰》 2010年06期 有篇文章《钢渣及电石渣与废弃混凝土固化储存CO_2基本参数研究》。
摘要:
对钢渣、电石渣、废弃混凝土等固体废弃物碳酸化固化储存温室气体二氧化碳(CO2)进行研究。实验从固体废弃物颗粒粒径、水分添加量等因素,考察碳酸化固化储存二氧化碳(CO2)的效果,并利用XRD、FTIR和SEM对反应机理进行分析。结果表明,固体废弃物颗粒粒径越小,二氧化碳(CO2)固化效率越高。水分添加量过低或过高均不利于碳酸化反应的进行,适宜的水分添加量为4kg/kg。XRD和FTIR分析表明,固体废弃物中的大量的CH、硅酸三钙(C3S)和氧化钙(CaO)转化为碳酸钙(CaCO3),以达到固化储存二氧化碳(CO2)的效果。SEM实验结果表明,经碳酸化处理后固体废弃物颗粒表面生成颗粒状的晶体物质。电石渣,钢渣及废弃混凝土对二氧化碳(CO2)固化效率分别为81%,76%和49%;每千克电石渣,钢渣及废弃混凝土分别可以固化二氧化碳(CO2)气体0.094kg,0.088kg及0.057kg。

5、水泥混凝土在非荷载作用下的变形是什么?

混凝土结构在非荷载作用下的裂缝分类包括:

水泥化学收缩、混凝土自收缩、塑性收缩裂缝、沉降裂缝、干缩裂缝、碳化收缩、温度裂缝、沉陷裂缝、钢筋锈蚀引起的裂缝以及碱骨料反应等。

重视荷载的目的是为了适应建筑结构设计的需要,以符合安全适用、经济合理的要求。

荷载的设计使用范围适用于各种工程的结构设计

其取用标准:GB50068荷载统计参数,设计基准期为50 年。

(5)混凝土sem扩展资料

作用面大小分类

1.均布面载荷建筑物楼面上的均布载荷,例如铺设的木地板,地砖,花岗石,大理石面层等重量引起的荷载.均匀面载荷Q值的计算,可用材料单位体积的重度y乘以面层材料的厚度d,得出增加的均匀布面载荷值,Q=y.d.

2.线荷载 建筑物原有的楼面或层面上的各种面载荷传到梁上或条形基础上,可简化为单位长度上的分布载荷、称为线荷载

3.集中荷载 荷载的分布面积远小于结构受荷时,为简化计算,可近似地将荷载看成作用在一点上。例如次梁传给主梁的荷载可近似地看成一个集中荷载,屋架传给柱子的压力、吊车的轮子对吊车梁的压力都是集中荷载。

作用方向

1.垂直载荷 如结构自重,雪载荷等

2.水平载荷 如风载荷,水平地震作用等。

6、求商品混泥土营销方案

你好!看你的问题就猜想你可能是刚进入砼这行业。
先自我介绍一下:本人材料工程专业,从事砼行业已有3年,在江苏某中型砼业公司做试验员。有兴趣的可以和我交流。
你说的销售确实很难,目前都是以朋友介绍哪哪有工程啦,谁谁认识那的建筑老板啦,让那工程给自己做的。还有就是市政工程,这种工程没关系一般拿不到的。
不过坚持出去跑,和建筑老板走走拉近些距离,时间长了会有效果的。现在跟你说说我们公司的一般销售报价吧,我公司的价格都是根据每个月市场报价和客户谈的,我们会在市场价的基础上让一定的利,比如百分之十或二十,这要看你们自己的成本来控制。这行业竞争也厉害的。方量小的工地每车少于5方的加收费用,坍落度每增加5cm加收费用,以p6为界增加一个可以加收5元每方等。
先这样了吧,手机回答你的,我喜欢广交朋友,愿意的可以给我留言。祝君好运!

7、混凝土坝温度监测资料的分析方法有哪些?主要图表形式有哪些

测粒度分布的有:筛分法、沉降法、激光法、电感法(库尔特)。 测比表面积的有:空气透过法(没淘汰)、气体吸附法。 直观的有:(电子)显微镜法、全息照相法。 显微镜法(Microscopy) SEM、TEM;1nm~5μm范围。 适合纳米材料的粒度大小和形貌分析。

8、混凝土扫描电镜怎样分析它的能谱图

EDS分析是分析元素种类的,利用不同元素的X射线光子特征能量不同进行成分分析。
完全水化的水泥石,其主要水化产物有:
1)水化硅酸钙凝胶(C-S-H)约为70%左右。(是水泥石形成强度的最主要化合物)
2)氢氧化钙晶体(Ca(OH)2)约为20%左右。
3)水化铝酸钙约为3%左右。
4)水化硫铝酸钙晶体(也称钙矾石)约为7%左右。
混凝土中因为有粉煤灰、矿渣粉等胶凝材料,水化产物会有所不同。

9、砂浆的干缩率是什么

干缩是水泥混凝土中常见的一种变形,而干缩变形又是引起水泥混凝土开裂的最主要的原因之一.混凝土收缩主要是由水泥浆体引起的.混凝土结构由于处于不同的约束状态下因收缩引起拉应力,当混凝土的抗拉强度小于该拉应力时,就会引起混凝土产生裂缝,从而导致混凝土耐久性性能的下降.因而对水泥砂浆以及混凝土的干缩和干缩补偿问题的研究,具有十分重要的实际意义.本论文结合973高性能水泥特点,从干缩测定方法着手,通过比较具代表性的两种砂浆干缩方法的试验结果,分析砂浆干缩与混凝土干缩的相关性,提出了新的砂浆干缩试验方法.研究了水胶比、矿物掺合料、相对湿度、养护龄期和养护温度对砂浆干缩性能的影响,并通过SEM、化学结合水测定和孔结构分析的方法探讨了矿物掺合料和养护温度对砂浆干缩性能的影响的机理.
砂浆:建筑上砌砖使用的黏结物质,由一定比例的沙子和胶结材料(水泥、石灰膏、黏土等)加水和成,也叫灰浆,也作沙浆。砂浆是由胶凝材料(水泥、石灰、粘土等)和细骨料(砂)加水拌合而成。常用的有水泥砂浆、混合砂浆(或叫水泥石灰砂浆)、石灰砂浆和粘土砂浆。
用无机胶凝材料与细集料和水按比例拌和而成,也称灰浆。用于砌筑和抹灰工程,可分为砌筑砂浆和抹面砂浆,前者用于砖、石块、砌块等的砌筑以及构件安装;后者则用于墙面、地面、屋面及梁柱结构等表面的抹灰,以达到防护和装饰等要求。普通砂浆材料中还有的是用石膏、石灰膏或粘土掺加纤维性增强材料加水配制成膏状物,称为灰、膏、泥或胶泥。常用的有麻刀灰(掺入麻刀的石灰膏)、纸筋灰(掺入纸筋的石灰膏)、石膏灰(在熟石膏中掺入石灰膏及纸筋或玻璃纤维等)和掺灰泥(粘土中掺少量石灰和麦秸或稻草)。

与混凝土sem相关的知识