导航:首页 > 网络营销 > sem扫描电镜分析

sem扫描电镜分析

发布时间:2020-08-08 02:08:47

1、sem扫描电镜,怎样分析材料结构

可以从扫描电镜图中看到纳米管的结构,我之前做二氧化钛纳米管,用扫描电镜可以直接看到

扫描电镜中的的参数,分别有:放大倍数,长度标尺,工作电压和工作距离。

2、关于SEM扫描电镜的几个问题,求大神出现...

如果是即将开始学习仪器操作的管理人员,建议先系统学习理论知识,再找专业的仪器工程师培训。如果是学生,要使用电镜,从安全角度考虑,1、2、3几项通常是值机人员完成的。我可以简单的向你介绍一下:1、主要是电源,只要能正常开机,一般无问题;2、加高压前一般要达到额定真空,否则气体电离度大、损伤电子枪,但是电镜软件一般都已经设置好,不到工作真空,根本加不上去高压,所以只要能够加高压,也无其他特别的问题;做完电镜关闭高压,等30秒以上,待灯丝冷却后再放气为宜,主要也是为了保护电子枪;3、样品台有它的额定移动距离,包括平面方向和上下方向,平面方向移动到极限时会有报警提示,看到提示往回移动即可。高度方向也如此,但是要注意向上移动时,要缓慢,要防止坚硬的试样撞击上方的探测器和极靴,损坏设备;4,电子束与试样作用,可激发出多种信号,如二次电子信号(用于形貌观察),背散射电子信号(用于区分微区成分)、俄歇电子信号(用于表面元素分析)、特征X射线(用于内部元素分析)、阴极荧光(用于发光材料研究),这些信号已经被有效的加以利用,这是一门独立的学科,若需要详细了解,你需要系统地学习一下。

3、tem和sem的异同比较分析以及 环境扫描电镜,场发射电镜与传统电镜

TEM和SEM的异同比较分析以及环境扫描电镜,场发射电镜与传统电镜相比较的技术特点和应用

xrd是x射线衍射,可以分析物相,SEM是扫描电镜,主要是观察显微组织,TEM是透射电镜,主要观察超限微结构。AES是指能谱,主要分析浓度分布。STM扫描隧道显微镜,也是观察超微结构的。AFM是原子力显微镜,主要是观察表面形貌用的。

TEM:

透射电子显微镜(英语:Transmission electron microscope,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2μm、光学显微镜下无法看清的结构,又称“亚显微结构”。 TEM是德国科学家Ruskahe和Knoll在前人Garbor和Busch的基础上于1932年发明的。

其他的建议楼主查看文献啊,文献上讲解都是比较详细的,百度知道字数有限,只能给你粘贴这么多了

4、扫描电镜和透射电镜的EDS对分析样品的成分有什么不同?

SEM TEM 都是主要用来分析形貌。他两相比较TEM的分辨率要高于SEM。TEM给出的是一个平面图,可以告诉你样品的形貌特这,尤其是孔材料用TEM分析最好。SEM是分析表面形貌结构的,给出的是立体图,对观察棒状,球状,等等材料材料有很好的视觉效果。EDS是分析成分的,一般是配套于TEM仪器上。它分析的是样品表面面某个小的部分的元素组成,不能代表样品整体组成。

5、SEM分析法是什么

6、扫描电镜的工作原理是什么

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。

当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。

(6)sem扫描电镜分析扩展资料:

研发历程:

1873 Abbe 和Helmholfz 分别提出解像力与照射光的波长成反比。奠定了显微镜的理论基础。

1931德国物理学家Knoll 及Ruska 首先发展出穿透式电子显微镜原型机。

1938 第一部扫描电子显微镜由Von Ardenne 发展成功。

1959年第一台100KV电子显微镜 1975年第一台扫描电子显微镜DX3 在中国科学院科学仪器厂(现北京中科科仪技术发展有限责任公司)研发成功。

7、扫描电镜图片如何分析

第一、扫描电镜照片是灰度图像,分为二次电子像和背散射电子像,主要用于表面微观形貌观察或者表面元素分布观察。
一般二次电子像主要反映样品表面微观形貌,基本和自然光反映的形貌一致,特殊情况需要对比分析。
背散射电子像主要反映样品表面元素分布情况,越亮的区域,原子序数越高。
第二、看表面形貌,电子成像,亮的区域高,暗的区域低。非常薄的薄膜,背散射电子会造成假像。导电性差时,电子积聚也会造成假像。

8、扫描电镜与透射电镜的区别?

1、结构差异:

主要体现在样品在电子束光路中的位置不同。透射电镜的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁透镜继续放大电子光束,最后投影在荧光屏幕上;扫描电镜的样品在电子束末端,电子源在样品上方发射的电子束,经过几级电磁透镜缩小,到达样品。当然后续的信号探侧处理系统的结构也会不同,但从基本物理原理上讲没什么实质性差别。

2、基本工作原理:

透射电镜:电子束在穿过样品时,会和样品中的原子发生散射,样品上某一点同时穿过的电子方向是不同,这样品上的这一点在物镜1-2倍焦距之间,这些电子通过过物镜放大后重新汇聚,形成该点一个放大的实像,这个和凸透镜成像原理相同。这里边有个反差形成机制理论比较深就不讲,但可以这么想象,如果样品内部是绝对均匀的物质,没有晶界,没有原子晶格结构,那么放大的图像也不会有任何反差,事实上这种物质不存在,所以才会有这种仪器存在的理由。

扫描电镜:电子束到达样品,激发样品中的二次电子,二次电子被探测器接收,通过信号处理并调制显示器上一个像素发光,由于电子束斑直径是纳米级别,而显示器的像素是100微米以上,这个100微米以上像素所发出的光,就代表样品上被电子束激发的区域所发出的光。实现样品上这个物点的放大。如果让电子束在样品的一定区域做光栅扫描,并且从几何排列上一一对应调制显示器的像素的亮度,便实现这个样品区域的放大成像。

3、对样品要求

(1)扫描电镜

SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法将特定剖面呈现出来,从而转化为可以观察的表面。这样的表面如果直接观察,看到的只有表面加工损伤,一般要利用不同的化学溶液进行择优腐蚀,才能产生有利于观察的衬度。不过腐蚀会使样品失去原结构的部分真实情况,同时引入部分人为的干扰,对样品中厚度极小的薄层来说,造成的误差更大。

(2)透射电镜

由于TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,例如存储器器件的TEM样品一般只能有10~100nm的厚度,这给TEM制样带来很大的难度。初学者在制样过程中用手工或者机械控制磨制的成品率不高,一旦过度削磨则使该样品报废。TEM制样的另一个问题是观测点的定位,一般的制样只能获得10mm量级的薄的观测范围,这在需要精确定位分析的时候,目标往往落在观测范围之外。目前比较理想的解决方法是通过聚焦离子束刻蚀(FIB)来进行精细加工。

(8)sem扫描电镜分析扩展资料:

透射电子显微镜的成像原理 可分为三种情况:

(1)吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。

(2)衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射波的振幅分布不均匀,反映出晶体缺陷的分布。

(3)相位像:当样品薄至100Å以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。

与sem扫描电镜分析相关的知识