1、SEM扫描电镜图怎么看,图上各参数都代表什么意思
1、放大率:
与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。
所以,SEM中,透镜与放大率无关。
2、场深:
在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。
3、作用体积:
电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。
4、工作距离:
工作距离指从物镜到样品最高点的垂直距离。
如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。
5、成象:
次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。
6、表面分析:
欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。
表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。
观察方法:
如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。
尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。
(1)sem电子检测器扩展资料:
SEM扫描电镜图的分析方法:
从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。
图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。
将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。
扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
2、质谱的检测器
质谱仪器的检测器有很多种,此处仅对电子倍增管及其阵列、离子计数器、感应电荷检测器、法拉第收集器等比较常见的检测器作简要评述。
电子倍增管是质谱仪器中使用比较广泛的检测器之一。单个电子倍增管基本上没有空间分辨能力,难以满足质谱学日益发展的需要。于是,人们就将电子倍增管微型化,集成为微型多通道板(MCP)检测器,并且在许多实际应用中发挥了重要作用。除了这种形式的阵列检测器外,电荷耦合器件(CCD)等在光谱学中广泛使用的检测器也在质谱仪器中获得了日益增多的应用。IPD(ion-to-photon)检测器由于它能够在高压下长时间稳定地工作,也引起了人们的极大重视。
离子计数器是一种非常灵敏的检测器,一般多用来进行离子源的校正或离子化效率的表征。对一般电子倍增管而言,一个离子能够在10的负7次方秒内引发10的5-8次方个电子,对绝大多数工作在有机物检测、生物化学研究领域的质谱仪器来说,其灵敏度已经足够。但在某些地球化学、宇宙学研究中,则需要用离子计数器来进行检测,其检测电流可以低于每秒钟一个离子的水平,一般离子源的信号至少也是离子计数器检出限的10的10次方倍。
感应电荷检测器也叫成像电流(imaging current)检测器,常与ICR 质量分析器联用。由于测量的是感应电荷(流),感应效率较低,故其灵敏度较低。但是,当它与ICR 等联用时,由于ICR允许离子的非破坏性测量和反复测量,因而 ICR 仍具有非常高的灵敏度。法拉第盘(杯)是一种最为简单的检测器。这种检测器是将一个具有特定结构的金属片接入特定的电路中,收集落入金属片上的电子或离子,然后进行放大等处理,得到质谱信号。一般来说,这种检测器没有增益,其灵敏度非常低,限制了它的用途。但是,在某些场合,这种古老的检测器起到不可替代的作用。如印地安那(Indianna)大学Hieftje等制作的阵列检测器就利用了法拉第杯检测器的上述特点。
3、扫描电镜sem主要探测的型号强弱与材料什么物理量有关
1、二次电子探测器:材料元素原子序数越大,激发出的信号越少,信号强度越低,表现出电镜图像越暗
2、背散射电子探测器:材料元素原子序数越大,激发出的信号强度越高,表现出电镜图像越亮
3、能谱仪:材料不同元素激发出特征X射线,收集时间越长,累积的强度越大
4、跪求PCB行业中SEM+EDS测试方法,非常感谢!!
PCB失效原因越来越多,在以前看起来难以发现的问题,现在可以用扫描电子显微镜与能谱(SEM&EDS)分析出来。本文介绍了在PCB生产过程中利用SEM&EDS发现的三个较为经典的案例,介绍了该技术在实际解决问题过程中的关键作用
:(SEM-EDS)在PCB失效分析中的应用
5、电子扫描显微镜(SEM)的工作原理???
扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。
示意图:
http://www.science.globalsino.com/1/images/1science9682.jpg
6、在"sem"中,接收样品信息的探测器主要有哪些
sem推广竞价
主要工作:选择扩展关键词给关键词价钱
根据同期设置计划
根据每按流量转化调整关键词计划包括间价钱
做报、周报、月报告
7、SEM如何利用二次电子成像
从书上查了一些内容,书的年代比较久远,可能买不到...有兴趣的话,尝试着去图书馆借一下吧。
SEM工作时,电子枪发射的入射电子束打在试样表面上,向内部穿透一定的深度,由于弹性和非弹性散射形成一个呈梨状的电子作用体积。电子与试样作用产生的物理信息,均由体积内产生。
二次电子是入射电子在试样内部穿透和散射过程中,将原子的电子轰击出原子系统而射出试样表面的电子,其中大部分属于价子激发,所以能量很小,一般小于50eV。因此二次电子探测体积较小。二次电子发射区的直径仅比束斑直径稍大一些,因而可获得较高的分辨率。
二次电子像的衬度取决于试样上某一点发射出来的二次电子数量。电子发射区越接近表面,发射出的二次电子就越多,这与入射电子束与试样表面法线的夹角有关。试样的棱边、尖峰等处产生的二次电子较多,相应的二次电子像较亮;而平台、凹坑处射出的二次电子较少,相应的二次电子像较暗。根据二次电子像的明暗衬度,即可知道试样表面凹凸不平的状况,二次电子像是试样表面的形貌放大像。
SEM内在试样的斜上方放置有探测器来接受这些电子。接受二次电子的装置简称为检测器,它是由聚焦极、加速极、闪烁体、光导管和光电倍增管组成。在闪烁体前面装一筒装电极,称为聚焦极,又称收集极。在其前端加一栅网,在聚焦极上加250-300V的正电压。二次电子被此电压吸引,然后又被带有10kV正电压的加速极加速,穿过网眼打在加速极的闪烁体上,产生光信号,经光导管输送到光电倍增管,光信号转变为电子信号。最后输送到显示系统,显示出二次电子像。