1、GA-BP神经网络模型预测的MATLAB程序问题
Matlab神经网络工具箱提供了一系列用于建立和训练bp神经网络模型的函数命令,很难一时讲全。下面仅以一个例子列举部分函数的部分用法。更多的函数和用法请仔细查阅Neural Network Toolbox的帮助文档。 例子:利用bp神经网络模型建立z=sin(x+y)的模型并检验效果 %第1步。随机生成200个采样点用于训练 x=unifrnd(-5,5,1,200); y=unifrnd(-5,5,1,200); z=sin(x+y); %第2步。建立神经网络模型。其中参数一是输入数据的范围,参数二是各层神经元数量,参数三是各层传递函数类型。 N=newff([-5 5;-5 5],[5,5,1],{'tansig','tansig','purelin'}); %第3步。训练。这里用批训练函数train。也可用adapt函数进行增长训练。 N=train(N,[x;y],z); %第4步。检验训练成果。 [X,Y]=meshgrid(linspace(-5,5)); Z=sim(N,[X(:),Y(:)]'); figure mesh(X,Y,reshape(Z,100,100)); hold on; plot3(x,y,z,'.')
2、如何提高BP神经网络模型的预测精度
直接调用归一化函数就可以啦,不会的话看一下这个帖子吧:遗传算法优化BP神经版网络权的案例(matlab代码分享)
http://www.ilovematlab.cn/forum. ... &fromuid=679292
3、如何建立bp神经网络预测 模型
建立BP神经网络预测 模型,可按下列步骤进行:
1、提供原始数据
2、训专练数据预测数据提取及归一属化
3、BP网络训练
4、BP网络预测
5、结果分析
现用一个实际的例子,来预测2015年和2016年某地区的人口数。
已知2009年——2014年某地区人口数分别为3583、4150、5062、4628、5270、5340万人
执行BP_main程序,得到
[ 2015, 5128.631704710423946380615234375]
[ 2016, 5100.5797325642779469490051269531]
代码及图形如下。
4、bp神经网络预测问题,有3个自变量1个因变量150组数据,要得到一个训练模型预测因变量(Matlab实现)
Matlab实现过程:
1、自变量数据
x1=[。。。]';x2=[。。。]';x3=[。。。]';
X=[x1 x2 x3];
2、因变量数据
y=[。。。]';
3、创建一个前馈网络
net=newff(X,y,[3,3,1],{'tansig','tansig','purelin'}, 'trainlm');
net.trainParam.epochs=1000;
net.trainParam.goal=10^专(-6);
4、调用相应属算法训练BP网络
[net,tr,yy]=train(net,X,y);%调用相应算法训练BP网络
5、对BP网络进行仿真
y_sim=sim(net,p);
5、求用matlab编BP神经网络预测程序
P=[。。。];输入T=[。。。];输出
% 创建一个新的前向神经网络
net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')
% 当前输入层权值和阈值
inputWeights=net_1.IW{1,1}
inputbias=net_1.b{1}
% 当前网络层权值和阈值
layerWeights=net_1.LW{2,1}
layerbias=net_1.b{2}
% 设置训练参数
net_1.trainParam.show = 50;
net_1.trainParam.lr = 0.05;
net_1.trainParam.mc = 0.9;
net_1.trainParam.epochs = 10000;
net_1.trainParam.goal = 1e-3;
% 调用 TRAINGDM 算法训练 BP 网络
[net_1,tr]=train(net_1,P,T);
% 对 BP 网络进行仿真
A = sim(net_1,P);
% 计算仿真误差
E = T - A;
MSE=mse(E)
x=[。。。]';%测试
sim(net_1,x)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
不可能啊 我2009
6、求预测一组数据的bp神经网络模型的matlab代码
用matlab求预测一组数据的bp神经网络模型,可以分
1、给定已经数据,作为一个原始序列;
2、设定自回归阶数,一般2~3,太高不一定好;
3、设定预测某一时间段
4、设定预测步数
5、用BP自定义函数进行预测
6、根据预测值,用plot函数绘制预测数据走势图
其主要实现代码如下:
clc
% x为原始序列(行向量)
x=[208.72 205.69 231.5 242.78 235.64 218.41];
%x=[101.4 101.4 101.9 102.4 101.9 102.9];
%x=[140 137 112 125 213 437.43];
t=1:length(x);
% 自回归阶数
lag=3;
%预测某一时间段
t1=t(end)+1:t(end)+5;
%预测步数为fn
fn=length(t1);
[f_out,iinput]=BP(x,lag,fn);
P=vpa(f_out,5);
A=[t1' P'];
disp('预测值')
disp(A)
% 画出预测图
figure(1),plot(t,iinput,'bo-'),hold on
plot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid on
title('BP神经网络预测某地铁线路客流量')
xlabel('月号'),ylabel('客流量(百万)');
运行结果:
7、想利用excel实现BP神经网络预测模型,求指导啊!
Excel是表格,真不知道为什么要用它实现BP神经网络
建议你用用MATLAB,相当方便
8、求一个bp神经网络预测模型的MATLAB程序
BP神经网络预测的步骤:
1、输入和输出数据。
2、创建网络。fitnet()
3、划分训练,测试和验证数据的版比例。net.divideParam.trainRatio;权 net.divideParam.valRatio;net.divideParam.testRatio
4、训练网络。 train()
5、根据图表判断拟合好坏。ploterrcorr();parcorr();plotresponse()
6、预测往后数据。net()
7、画出预测图。plot()
执行下列命令
BP_prediction
得到结果:
[ 2016, 14749.003045557066798210144042969]
[ 2017, 15092.847215188667178153991699219]
[ 2018, 15382.150005970150232315063476562]
[ 2019, 15398.85769711434841156005859375]
[ 2020, 15491.935150090605020523071289062]
9、BP神经网络预测模型在matlab下编程如何显示出它的预测值
%画出预测输出结果和期望输出结果图
figure;
plot(output_fore,':og');
hold on;
plot(output2_lianghua','-*');
legend('预测输出内','期望输出');
title('BP网络预测输出','fontsize',12);
ylabel('函数输出','fontsize',12);
xlabel('样本','fontsize',12);
%画出预测结果容误差图
figure
plot(error,'-*')
title('BP网络预测误差','fontsize',12)
ylabel('误差','fontsize',12)
xlabel('样本','fontsize',12)