导航:首页 > 网络营销 > sem量表数据分析

sem量表数据分析

发布时间:2020-09-28 09:18:33

1、请教大侠,所用的数据不是基于李氏量表的1-7分的那种,能否用结构方程去分析?

不行的,结构方程建模所能分析的数据必须是连续性数据变量,如果是分类变量 比如性别、学历等等就不好纳方程中

2、spss和amos区别

1、工作分工不同。

spss做前期数据描述和除结构线性模型外的多数统计工作,amos专做结构线性模型相关的统计。

2、使用对象不同。

对量表的区分效度(discrimination validity)检验时,发现有人用SPSS,主要是检验平均提取方差(Average variance extracted,AVE)与该因子与任何其他因子的共同方差(highest shared variance)的值。

而有人则用AMOS,检验修正指数(modification index,MI)的显著性,通过x2/df,NNFI,GFI,AGFI,CFI,RMSEA等拟合优度检验。

3、用途不同。

SPSS是探索性统计分析软件,AMOS是验证性统计分析软件。做探索性因素分析时用SPSS,探索性因素分析完成后,为了验证所得到的因子结构是否合理,就需要进行验证性因素分析。

现在的论文如果涉及因子分析的话,大多要求进行验证性因素分析,以及路径分析等等。这时候,AMOS就派上用场了,AMOS可以进行验证性因素分析、路径分析、群组分析等。

(2)sem量表数据分析扩展资料

SPSS操作功能:

1、参数检验:单样本、两独立样本、配对样本。

2、方差分析:单因素、多因素、协方差分析。

3、非参数检验:X2、二项式分布、K—S检验。

4、相关分析和线性回归分析。

5、聚类分析。

6、因子分析。

7、信度分析。以上的内容是经常用到的,尤其是相关分析和线性回归分析。

3、产品经理怎么培养数据分析能力

显然,这里所说的数字和数据,不是指我们每月银行卡里面多出来的那个,而是产品的数据,其中包括行业整体数据、网站运营数据、用户数据、广告投放/转化率数 据、业务/产品销售量数据、产品投入/收益数据等等,所有这些数据构成的综合指标,将决定一个产品经理的业绩评定——当然,最终反映出来的,可能就是个人 银行卡里的数字。在数据指标是很科学的体系的情况下,数据分析得出的结论确实比主观的臆断会更具有确定性和说服力。那么,产品经理在管理一个互联网产品时,到底需要关注哪些数据呢?一般来说,我们主要关注的有以下几个方面:1.网站流量数据。比如访问量、点击量、浏览量、转化率、停留时间等等。以上是基础的指标,但结合到几十万网页还有不同来源、不同时间的时候,就是非常复杂数据体系了。 2.网站用户数据。比如用户人口的属性特征:年龄、性别、行业、职位、地区等等;另外,还有用户行为特征:登录次数、注册数、注销数、点击数、收藏数、操作数、订购量等等。3.访谈数据。可能有些公司会做一些调查问卷,如果能够按照统计学规范设计成量表,那么这种访谈数据也是很有价值的。一般的统计就能从里面了解不少信息,如果问卷设计合理,还可以利用多元统计的方法进一步挖掘更深入的信息。4.财务数据。比如总销售额、毛利、纯利润、成本、广告投放额等。产品是不是赚钱,能赚多少钱,是一个产品经理关注的重点,也是追求的目标。5.外部来源数据:行业市场份额、竞争对手数据等。6.搜索引擎数据:搜索引擎来源比例、SEM流量所占比例、搜索关键词以及各个关键词产生的PV值等。 以上这些数据,是我们经常需要经常用到的,具体在使用的时候,还可能需要根据产品性质不同、KPI不同和职责不同,来选择不同的数据类型,因为市场部和BD和老板所看的数据都是不一样的。对于一个产品经理来说,他不只需要像一个市场分析者或者财务分析者一样了解数据结果,更要通过这些数据的积累和经验进行更加细化的分析和研究,从而了解用户是如何创造出这些数据的,以及为什么创造出这样的数据。只有做到了这些,才能将繁琐枯燥的数字转化为运营能力的提升。那产品经理如何才能做好数据分析呢?首先,要拥有一个好的统计系统,没有好的数据来源,再强的分析能力,也没有用武之地。现在互联网上提供很多,如CNZZ,当然也可以根据产品情况有针对性地进行自主开发;其次,要持续关注数据的变化,最好有专人负责数据汇总和解读。运营数据分析是一个数据持续积累和研究的过程,越多越细致的数据,越能从中获得有价值的分析结果。第三,要定出产品的主要考核指标,并进行定期的周度、月度、季度、年度或者某一个特别事件的专项数据分析,从而了解一个阶段内的发展过程,了解发展趋势;第四,需要采用一些图表,以增强数据的可读性。有时候,再好的语言和文字,也不如一张图来得简洁明了;最后,除了自己的产品外,我们还需要时刻关注行业数据的变化,以及中国整体网民对同类型产品的偏好度、用户属性和变化情况。目前也有很多第三方公司提供这类报告,比如艾瑞、CNNIC等。总而言之,数据分析是一个过程漫长,事务繁杂的工作,但只要你对它保持足够的重视程度,坚持不懈地去做,却可能有意外的收获。

4、硕士毕业论文涉及sem结构方程模型,有了解amos的大神吗?

结构方程模型可以用SPSSAU。操作非常简单很容易上手,输出标准格式结果和结构图,针对每一步分析还会提供智能分析建议。

结构方程模型-spssau

结构图-spssau

5、在问卷调查中常用数据分析方法有哪些

我一般都用表单大师做完问卷后直接进行分析

6、销量数据不同,哪个更权威

显然,这里所说的数字和数据,不是指我们每月银行卡里面多出来的那个,而是产品的数据,其中包括行业整体数据、中国站运营数据、用户数据、广告投放/转化率数 据、业务/产品销售量数据、产品投入/收益数据等等,所有这些数据构成的综合指标,将决定一个产品经理的业绩评定——当然,最终反映出来的,可能就是个人 银行卡里的数字。在数据指标是很科学的体系的情况下,数据分析得出的结论确实比主观的臆断会更具有确定性和说服力。那么,产品经理在管理一个互联中国产品时,到底需要关注哪些数据呢? 一般来说,我们主要关注的有以下几个方面: 中国站流量数据。比如访问量、点击量、浏览量、转化率、停留时间等等。以上是基础的指标,但结合到几十万中国页还有不同来源、不同时间的时候,就是非常复杂数据体系了。 中国站用户数据。比如用户人口的属性特征:年龄、性别、行业、职位、地区等等;另外,还有用户行为特征:登录次数、注册数、注销数、点击数、收藏数、操作数、订购量等等 三.访谈数据。可能有些公司会做一些调查问卷,如果能够按照统计学规范设计成量表,那么这种访谈数据也是很有价值的。一般的统计就能从里面了解不少信息,如果问卷设计合理,还可以利用多元统计的方法进一步挖掘更深入的信息。 财务数据。比如总销售额、毛利、纯利润、成本、广告投放额等。产品是不是赚钱,能赚中国钱,是一个产品经理关注的重点,也是追求的目标。 外部来源数据:行业市场份额、竞争对手数据等。 搜索引擎数据:搜索引擎来源比例、SEM流量所占比例、搜索关键词以及各个关键词产生的PV值等。 以上这些数据,是我们经常需要经常用到的,具体在使用的时候,还可能需要根据产品性质不同、KPI不同和职责不同,来选择不同的数据类型,因为市场部和BD和老板所看的数据都是不一样的。 对于一个产品经理来说,他不只需要像一个市场分析者或者财务分析者一样了解数据结果,更要通过这些数据的积累和经验进行更加细化的分析和研究,从而了解用户是如何创造出这些数据的,以及为什么创造出这样的数据。 只有做到了这些,才能将繁琐枯燥的数字转化为运营能力的提升。那产品经理如何才能做好数据分析呢?首先,要拥有一个好的统计系统,没有好的数据来源,再强的分析能力,也没有用武之地。现在互联中国上提供很多,如CNZZ,当然也可以根据产品情况有针对性地进行自主开发;其次,要持续关注数据的变化,最好有专人负责数据汇总和解读。 运营数据分析是一个数据持续积累和研究的过程,越多越细致的数据,越能从中获得有价值的分析结果。第三,要定出产品的主要考核指标,并进行定期的周度、月度、季度、年度或者某一个特别事件的专项数据分析,从而了解一个阶段内的发展过程,了解发展趋势;第四,需要采用一些图表,以增强数据的可读性。有时候,再好的语言和文字,也不如一张图来得简洁明了; 最后,除了自己的产品外,我们还需要时刻关注行业数据的变化,以及中国整体中国民对同类型产品的偏好度、用户属性和变化情况。目前也有很多第三方公司提供这类报告,比如艾瑞、CNNIC等。总而言之,数据分析是一个过程漫长,事务繁杂的工作,但只要你对它保持足够的重视程度,坚持不懈地去做,却可能有意外的收获

7、如何用spss分析两个维度之间的相关性

李克特量表一般采用5级评分法,可以作为连续性变量进行处理,如果现状有几个问题,可作为几个变量与责任动机、出国动机、内在兴趣动机进行复相关分析,可在多元线性回归分析中实现。如果责任动机、出国动机、内在兴趣动机也分别有多个问题,可进行典型相关分析,我经常帮别人做数据分析的。

8、用spss做相关性分析,有六个维度,每个维度下面平均四个问题,怎么做?

可以计算维度平均值,把多个题项合并成一个维度后,再进行相关分析。

针对问卷量表数据,同时几个题表示一个维度。比如想要将“我在工作中能获得成就感”、“我可以在工作中发挥个人的才能”这两题合并成一个维度(影响因素),可以通过SPSSAU的【生成变量】功能计算均值,生成新的变量用于后续分析。

操作步骤:1、选择所有要合并的题项;2、添加上变量名称;3、确认处理。

生成变量

相关分析

与sem量表数据分析相关的知识