1、PLC在中央空调冷控制系统中的应用!
冰蓄冷中央空调是将电网夜间谷荷多余电力以冰的冷量形式储存起来,在白天用电高峰时将冰融化提供空调服务。由于我国大部分地区夜间电价比白天低得多,所以采用冰储冷中央空调能大大减少用户的运行费用。
冰蓄冷中央空调系统配置的设备比常规空调系统要增加一些,自动化程度要求较高,但它能自动实现在满足建筑物全天空调要求的条件下将每天所蓄的能量全部用完,最大限度地节省运行费用。
2 控制系统结构
控制系统由下位机(现场控制工作站)与上位机(中央管理工作站)组成,下位机采用可编程序控制器(PLC)与触摸屏,上位机采用工业级计算机与打印机,系统配置必要的附件如通信设备接口、网卡、调制解调器等,实现蓄冷系统的参数化与全自动智能化运行。
下位机和触摸屏在现场可以进行系统控制、参数设置和数据显示。上位机进行远程管理和打印,它包含下位机和触摸屏的所有功能。整个系统以下位机的工业级可编程序控制器为核心,实现自动化控制。控制设备与器件包括:传感检测元件、电动阀、变频器等。
2.1 下位机系统(区域工作站)
2.1.1 TP21触摸屏
采用TP27彩色触摸屏作为操作面板,完全取代常规的开关按钮、指示灯等器件,使控制柜面谈得更整洁。并且,TP27触摸屏在现场可实现状态显示、系统设置、模式选择、参数设置、故障记录、负荷记录、时间日期、实时数据显示、负荷曲线与报表统计等功能,中文操作界面直观友好。
2.1.2 SIEMENS可编程序控制器
SIMATIC S7-300系列PLC适用于各行各业、各种场合中的检测、监测及控制的自动化,其强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。
该产品具有光电隔离,高电磁兼容;具有很高的工业适用性,允许的环境温度达60℃;具有很强的抗干扰、抗振动与抗冲击性能,因此在严酷的工作环境中得到了广泛的应用。
自由通讯口方式也是S7-300型PLC的一个很有特色的功能,它使S7-300型PLC可以与任何通讯协议公开的其它设备、控制器进行通讯,即S7- 300型PLC可以由用户自己定义通讯协议(例ASCII协议),波特率为1.5Mbit/s(可调整)。因此使可通讯的范围大大增加,使控制系统配置更加灵活、方便。任何具有串行接口的外设,例如:打印机或条形码阅读器、变频器、调制解调器(Modem)、上位PC机等都可连接使用。用户可通过编程来编制通讯协议、交换数据(例如:ASCII码字符),具有RS232接口的设备也可用PC/PPI电缆连接起来进行自由通讯方式通讯。
当上位机脱机时,在下位机控制下,整个系统能正常运行。
2.2 上位机系统(中央管理工作站)
2.2.1 上位机
上位机即图文控制中心,主要由PC机和激光打印机组成,采用SIMATIC WINCC软件平台,采用全中文操作界面,人机对话友好。管理人员和操作者,可以通过观察PC机所显示的各种信息来了解当前和以往整个冰蓄冷自控系统的运行情况和所有参数,并且通过鼠标进行设备管理和执行打印任务。
2.2.2 WINCC软件平台
WINCC软件在自动化领域中可用于所有的操作员控制和监控任务。可将过程控制中发生的事件清楚地显示出来,可显示当前状态并按顺序记录,所记录的数据可以全部显示或选择简要形式显示,可连续或按要求编辑,并可输出打印报表和趋势图。
WINCC 能够在控制过程中危急情况的初发阶段进行报告,发出的信号既可以在屏幕上显示出来,也可以用声音表现出来。它支持用在线帮助和操作指南来消除故障。某一 WINCC工作站可专门用于过程控制以使那些重要的过程信息不被屏蔽。软件辅助操作策略保证过程不被非法访问,并提供用于工业环境中的无错操作。
WINCC 是MICRSOFT WINDOWS98或WINDOWS NT4.0操作系统下,在PC机上运行的面向对象的一流32位应用软件,通过OLE和ODBC视窗标准机制,作为理想的通讯伙伴进入WINDOWS世界,因此WINCC可容易地结合到全公司的数据处理系统中。
3 冰蓄冷系统的控制
3.1 控制目的、范围及主要受控设备
蓄冷控制系统控制目的:通过对制冷主机、储冰装置、板式热交换器、系统水泵、冷却塔、系统管路调节阀进行控制,调整储冰系统各应用工况的运行模式,在最经济的情况下给末端提供一稳定的供水温度。同时,提高系统的自动化水平,提高系统的管理效率和降低管理劳动强度。
控制范围包括整个冰蓄冷系统的参数状态显示、设备状态及控制,主要控制设备有:双工况主机、电动阀、冷却塔、冷却水泵、蓄冰装置、初级乙二醇泵、板式换热器、次级乙二醇泵等。
3.2 控制功能
控制功能包括整个冰蓄冷系统稳定、经济运行所需的功能。
3.2.1 工况转换功能
根据季节和机器运行情况,自控系统具备以下工况转换功能:
a) 双工况主机制冰同时供冷模式;b) 双工况主机单独制冰模式;c) 主机与蓄冰装置联合供冷模式;d) 融冰单独供冷模式;e) 主机单独供冷模式。
3.2.2 工况的启停、显示和故障报警功能
控制系统按编排的时间顺序,结合负荷预测软件,控制制冷主机及外围设备的启停数量及监视各设备之工作状况与运行参数,如:
- 制冷主机启停、状态及故障报警;-制冷主机运行参数;-制冷主机缺水保护;-制冷主机供/回水温度、压力遥测和显示;-冷冻水泵启停、状态及故障报警;- 乙二醇泵启停、状态及故障报警;-冷却水泵启停、状态及故障报警;-压差旁通管的压差测量与显示;-冷却塔风机启停、状态及故障报警;
-冷却塔供/回水温度控制与显示;-供/回水温度、压差遥测控制与显示;-板式换热器侧进出口温度控制与显示;-蓄冰装置进、出口温度遥测控制与显示;-冷冻水回水流量控制与显示;-电动阀开关、调节与阀位控制与显示;-室外温湿度遥测控制与显示;-蓄冰量测量与显示;-末端冷负荷控制。
3.2.3 数据的记录和打印功能
控制系统对一些需要的监测点进行整年趋势记录,控制系统可将整年的负荷情况(包括每天的最大负荷和全日总负荷)和设备运转时间以表格和图表记录下来,供使用者使用。所有监测点和计算的数据均能自动定时打印。
3.2.4 手动/自动转换功能
控制系统配置灵活的手动/自动转换功能。
3.2.5 优化控制功能
根据室外温度、天气预报、天气走势、历史记录等数据自动选择主机优先或融冰优先。在满足末端负荷的前提下,每天使用完储存的冷量,尽量少地运行主机。充分发挥冰储冷系统优势,节约运行费用。
3.2.6 全自动运行功能
系统可脱离上位机工作,根据时间表自动进行制冰和控制系统运行、工况转换、对系统故障进行自动诊断,并向远方报警。触摸屏显示系统运行状态、流程、各节点参数、运行记录、报警记录等。
3.2.7 节假日设定功能
系统可根据时间表自动运行,同时也可预先设置节假日,控制储冰量和储冰时间,使系统在节假日时对不需要供应空调的场所停止供冷。
3.2.8 下位机操作功能
下位机彩色触摸屏操作界面见图1.
下位机操作功能如下:
a) 人机对话。操作人员可通过触摸面板进行人机对话,操作界面完全中文化,具有提示、帮助、参数设置、密匙设置、故障查询、历史记录等功能。
b) 系统设置。包括操作口令设置、运行设置、运行时间表设置、记录溢出处理、自动/手动/测试选择、节假日设置、系统参数设置(包括各节点温度、压力,各介质的流量,储冰量,制冰速率,融冰速率,阀门开度,末端负荷等。)
c) 故障记录、运行记录、历史记录等。
3.3 远程监控
控制系统通过电话线或宽带网,与专家系统连接,对系统进行运行监控、参数修改、数据采集等,使系统不断完善和软件版本升级,让用户得到更好的服务。远程监控的目的是用户可以通过PSTN(公共交换传输网)对冷冻站进行异地远程监控。同时也可以实现远程调试、远程适时监控和在线维护等,从而大大减轻工程人员的工作强度,降低工程成本。
3.4 系统扩展控制
控制系统设计界面友好,PLC和触摸屏均可扩展,内容可扩展、参数也可修改,通过485通讯接口或通信协议实现BAS与冰储冷自控系统一体化,节约投资、方便管理。系统集中控制,减少了动力柜占地面积,又使动力柜型号统一、式样相同、大小一致。系统扩展控制如下:
a) 污水泵自动控制; b) 风、排风控制;c) 活水泵稳压控制;d) 防水泵定时运行、检测、报警; e) 淋水泵稳压控制; f) 筑物夜间轮廓照明自动控制;g) 低配计量、开关状态检测、报警。
4 结语
通过PLC在冰蓄冷空调系统的推广运用,验证了PLC系统的可靠性特点,保证了系统的安全运行和有效节能,同时也为楼宇设备控制系统的控制器选型提供了新的思路。相信在不久的将来,越来越多的PLC系统在冰蓄冷空调系统的运用中日趋成熟,在楼宇设备控制系统中也将会大显身手。
2、乙烯乙二醉制冰系统的组成和简单的工艺流程有哪些?
乙烯乙二醇制冰系统主要由双工况冷水机组(空调工况和制冰工况〕、蓄冰槽、板式换热器、乙二醇水箱、乙二醇补水泵、冷水泵、空调负载泵及其自控与管道等系统组成,工艺流程见图5--123。5--123 一般是夜间双工况主机和蓄冰槽进行制冰模式运行,向蓄冰槽储存冷堡,白天空调系统运行时,其冷量主要来自双工况冷水机组和蓄冰槽。在系统中增加了板式换热器循环系统主要是将双工况冷水机组和蓄冰槽的储存冷量通过换热器进行热交换,使其空调负荷侧的水温下降至空调冷冻水要求的温度来供给空调系统中的空调机组,风机盘管等空调设备的需要。板式换热器分隔开乙二醇溶液水和空调水的回路,以减少乙二醇冷媒的用量。如完全靠蓄冰槽融冰供冷量时,双工况冷水机组及其冷却水系统可停止工作,但需蓄冰槽数量较多,占地面积过大,投资较高,一般应根据全天冷负荷分布情况和该地区分时电费情况采用白天开启双工况冷水机组,在冷负荷高峰时其冷量不足的部分由在夜间蓄存的冰量进行融冰供冷的方式。总之,需根据具体工程情况确定较为合理经济的供冷运行模式。
采用乙烯乙二醇制冰系统因增加了板式换热器的热交换环路,不但增加了设备投入,同时降低了换热效率,所以对蓄冰槽、系统管道等应做好绝热保冷层的施工,以减少冷量的损失而提高热交换效率。
一般蓄冰槽为厂家制作,现场组装,蓄冰槽内的盘管换热器采用全浸水式,为了使制冰均匀采用同程式系统,冰槽数量由设计选定。
为了便于冲洗或检修,可在设备的进出口处设置旁通管和控制阀,系统采用自动控制以便于空调供冷和制冰融冰供冷的程序切换。
施工时应注意事项:
(1)向水管内充乙二醇前必须将管路冲洗干净,其成分浓度配制由厂家提供资料,并经不少于4~5h的循环运行,需排除系统内空气,在运行中不断调节乙二醇溶液水的浓度。
(2)向蓄冰槽注水,应保证水质清洁,宜进行软化处理,注水量应观察槽上的观察窗上显示的水位,水量不足会降低蓄冷量,水量过多会在蓄冰循环中溢出,蓄冰槽四周宜做排水沟以便排除从槽中滋出的水。
(3)在制冰工况的运行中,需检查制冰的速度和制冷机组运行的状况,当开启负载空调泵进行融冰供冷循环换热时,应检查板式换热器进出水管上温度计的温度,同时检查融冰的效果和速度。
3、什么是基载电锅炉?
最新回答 2条回答
匿名用户
冰蓄冷空调系统中的,普通工况主机就是机载主机,用于夜间双工况主机蓄冰时,开启基载主机满足当时的基本冷负荷的主机!
2013-12-12
4、基载主机什么意思
冰蓄冷系统夜间需要开启双工况制冷机蓄冷,但在此期间仍有空调负荷,承担此时的空调负荷的制冷机称为基载主机。
5、求:冰蓄冷施工组织设计。急!!
冰蓄冷系统的设计与施工工法
一、工程概述
北京国际金融中心位于月坛北桥东侧,建设单位是首创集团融金房地产开发有限公司。该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。是全国最大的冰蓄冷工程项目。该项目由北京建工总机电设备安装工程有限公司第一项目部进行施工安装。本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层;机房建筑面积1200m2(蓄冰槽520m2)。冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。
二、设备配置
(一)冷源
1.双工况螺杆式冷水机组3台(YSFAFAS55CNES)约克(合资)2.基载离心式冷水机组2台(YKFBEBH55CPE)约克(合资)
(二)冷却塔:大连斯频得
冷却塔共计5台,CTA-600UFWS两台,CTA-450UFWS三台。
(三)板式换热器:丹麦APV板式换热器共计3台,选用APV板式换热器J185-MGS16/16。
(四)蓄冰槽(现场加工)
蓄冰槽共有六台,最大蓄冰量31787.2KW(9040RT)。(见表1)
(五)乙二醇循环水泵:德国KSB
乙二醇循环水泵共计4台,其中1台备用,并配4台变频器。
(六)冷却水循环泵:德国KSB
冷却水循环泵选用卧式离心泵4台,其中1台备用。
三、运行策略:
(一)负荷说明
根据建筑使用情况及初步设计估算结果,整幢大楼的尖峰冷负荷为11428KW(3250RT)。由于气温变化,空调系统在整个运行期间日负荷大小会有变化,根据负荷分布情况,出100%负荷情况逐时空调负荷:(见表2)
蓄冰的模式可采用全部(全量)蓄冰模式或部分(分量)蓄冰模式。本工程采用部分蓄冰模式。
根据采暖通风专业提供的建筑物设计日100%负荷如下:最大小时冷负荷:11428KW(3250RT)
设计日冷负荷:151705KWH(43144RTH)
最大小时基载冷负荷:2286KW(650RT)
扣除基载冷负荷后的最大小时冷负荷:9142.33KW(2600RT)
扣除设计日基载冷负荷后冷负荷:96852.4KWH(27544RTH)
(二)系统流程简述
本设计蓄冰设备选用冰球式蓄冰设备,系统选用串联单循环回路方式,在循环回路中,乙二醇制冷主机置于蓄冰装置上游。系统中设有板式热交换器3台,每台换热量为用3961KW(1126RT),用以把冰蓄冷系统的乙二醇回路与通往空调负荷的水回路隔离开,保证乙二醇仅在蓄冰循环中流动,而不流经各空调负荷回路,可减少乙二醇用量并避免乙二醇在空调负荷回路中的泄漏。乙二醇回路中设有4个电动调节阀CV1,CV2,CV8CV9,根据冷负荷变化,通过电动调节阀CV1,CV2调节进入蓄冰装置的乙二醇流量,保证进入板式热交换器的乙二醇侧温度恒定并满足冷负荷需求。电动调节阀CV8.CV9调节进入板式热交换器的乙二醇流量,保证进入板式热交换器的水侧温度恒定并满足冷负荷需求。同时,空调冷冻水回路采用的是二级泵系统,节省运行费用。
本工程最大蓄冰容量31787.2KW(9040RT),分6个冰槽,槽内净高2.35米。为了尽量减少冰槽的占地面积,我们将蓄冰槽作成非标准型的,尽量利用建筑空间,顶板上方预留设备入口兼检查孔,供设备及检修人员出入。冰槽结构为外保温。自蓄冰槽向外的结构组成分为:防水涂刷层,橡塑保冷层。为满足电力部门削峰填谷的需求,电力高峰段,双工况冷水机组,基载冷水机组满负荷运行,不足冷量由融冰输出供给。系统设计中同时考虑备用,当任意一台机组发生故障时,开启备用基载冷水机组满足空调供冷的需求。当任意一台双工况冷水机组发生故障时,开启备用基载冷水机组,满足第二天空调供冷的需求,当任意一个分区的蓄冰槽发生故障时,开启备用基载冷水机组,满足空调供冷的需求。
在过渡季节空调供冷时,停开冷水机组,仅输出融冰供冷便可满足空调需求。此时,电动调节阀CV1,电动阀CV3关闭,开启电动阀CV2,CV4,乙二醇溶液冰不流经双工况冷水机组,避免了泵功率的浪费。在蓄冷槽单独供冷时,乙二醇溶液泵采用变频技术,大量降低水泵能耗。
(三)蓄冰运行策略
根据全日冷负荷曲线及北京地区的分时电价情况,本设计采用的是负荷均衡的部分蓄冰策略,这样既可以用在夜间储存的冷量最大限度的满足在电力高峰期空调冷负荷需要,节约系统运行成本,也尽可能少的占用该建筑的有效面积。
四、运行情况比较:
由于北京地区电网采用了峰谷电价政策,高峰电价与低谷电价已达到4.3∶1。因此,采用冰蓄冷系统,可以大大降低空调系统运行费用。现阶段,峰谷分时电价如下表:
乙二醇系统的控制根据电力负荷的峰谷时段(电价的高低)和空调负荷的要求,整个蓄冰制冷系统能自动切换系统的运行工况:
(1)双工况主机制冰模式
(2)双工况主机+融冰供冷模式(满负荷情况)
(3)融冰单供冷模式(部分负荷情况)。控制系统根据工况要求,自动开关电动阀,组成某工况所需的流体通道。通过阀门调节控制融冰速度;在融冰单供冷工况通过乙二醇泵变频及台数调节控制融冰速度及供水温度。
1.双工况主机制冰模式:23∶00~7∶00
在此时段内为电力低谷期,电价低廉。双工况主机设定为制冰工况并满负荷运行,所制得的冷量全部以冰形式存储起来,以供冷负荷高峰期使用。开启双工况主机和乙二醇泵,在双工况主机、乙二醇泵和储冰槽之间形成一个制冰循环。在电力低谷期,充分利用低谷廉价电力,三台双工况主机全力制冰,制冷机组首先使回路显热降温,直降到蓄冷球相变温度,达到相变温度后,随着吸收机组产生的冷量,蓄冷球开始发生相变(结冰),在结冰期间冰球不断吸取机组所产的冷量,至制冷机组产生的冷冻流体温度也略降至相变结束时对应的最终温度速度很快,而这种快速的降温表明了蓄冷阶段的结束。因为制冰时主机的效率受到室外空气参数系统设定的,达到设计蓄冰量所需要的时间可能超过或短于电力低谷时段,如果超过电力低谷时段,系统会在早晨电力平峰期甚至电力高峰期制冰,系统的运行费用增加;如果短于电力低谷期,则会造成系统在达到设计蓄冰量以后无效或低效运行(主机出口温度很低),系统的运行费用也会增加。所以应该在电力低谷期,充分用足制冷机组制冰量和冰球的蓄冰能力,才能最大发挥蓄冰的功效(即最的效果)。判断制冰结束的条件是:
6、什么是基载主机
冰蓄冷空调系统中的,普通工况主机就是机载主机,用于夜间双工况主机蓄冰时,开启基载主机满足当时的基本冷负荷的主机!
7、中央空调主机(特指蒸发器/冷凝器)属于特种压力容器吗?急!急!急!
压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为工作压力大于或者等于0.1MPa(表压),且压力与容积的乘积大于或者等于2.5MPa•L的气体、液化气体和工作温度高于或者等于标准沸点的液体的固定式容器和移动式容器
8、冰蓄冷技术的技术优点
1、模块化设计
模块化设计,当万一有个别高灵蓄冰桶泄漏时,只需将该蓄冰桶关闭,其他蓄冰桶则可继续工作,不会影响整个系统运行。
2.对环境无污染,蓄冰桶内为乙二醇系统和冻结冰水系统,因其整体为封闭式结构,对环境无污染。
3.故障率低、使用寿命长,蓄冰桶内无运转部件,无内应力,故冰桶故障率低,设计使用寿命在20 年以上。
4.应用广泛,制冷主机可灵活选用活塞式、螺杆式、涡旋式,也可以使用三级离心式冷水机组。
5. 安装方式灵活、快捷,蓄冰桶在工厂内整体组装配管,发运至现场后作为成品只待就位。由于接管标准化,产品模块化、成品化,安装简单方便,现场无须制冷专业安装人员。
6. 对原有系统的改造扩建快捷、灵活,在扩建项目中,蓄冰桶模块化的设计能很方便地在原有系统上增加一个或者多个蓄冰桶,即可满足用户新的需求,实现用户中央空调系统的升级换代。在改造项目中,只需断开部分管路,就地改造原有的冷却盘管,便可使系统更新为蓄冰系统。
7. 单元体积小,可充分利用有效空间,蓄冰桶直径分别为2.3 米和1.8 米,根据蓄冷量不同,蓄冰桶高度分为各种规格,可充分利用建筑物内边角等废弃空间。蓄冰桶可根据空间的需要安装于室内、室外,甚至可以叠放,或埋在地下以节约空间;
8、灵活的设计使蓄冰空调系统均可达到五种运行模式:1.双工况主机制冰模式(夜间蓄冷)2.双工况主机制冰兼为未端供冷模式3.双工况主机单独供冷模式4.蓄冰桶融冰单独供冷模式
9、同普通的送风系统相比较,低温送风的好处包括减少初投资,养活耗电量和降低运行费用。采用名义温度7℃送风系统(6℃到8℃的范围)在具有蓄冰装置的应用中可以提供最大的好处。初投资的减少来自于空气处理机组、风管、水泵、管道和配电设备等规格的减少。有些建筑中,由于风管尺寸减小从而使要求的建筑层高减小,可以节约建造费用。例如,送风温度从136℃降到7℃。在送风和配水系统上的投资可减少14%—9%。将采用136℃送风温度的一般冷水机组与采76℃送风的蓄冰系统相比较时,净投资上的减少还包括在机组和蓄冰桶上的投资可减少5%-11%。
蓄冰系统与低温送风结合的系统在初投资上面是可以与常规空调系统相竞争的。在初投资相等的情况下。蓄冷系统具有常规系统无可匹敌的优点:它可以减小电力需求。对于冷水机组,风机和水泵的耗电量可减少50%甚至更多。增加高峰期以外的耗电千瓦小时数(KWH)而减少高峰期内的耗电量;至少可以减少用户的运行费用20%;它为用户提供了更加灵活的系统,包括将蓄存的制冷容量在短缺的时候提供给一些关键场合使用,并且它的维护要求也较低。一般来说,一天使用10—14小时的各种大楼,建议采用低温的送风系统和蓄冰系统。
10、蓄冰筒的材料技术要求
蓄冰筒外壳采用电冰箱外壳生产工艺,筒体由8MM工程材料制成;蓄冰筒保温材料由50毫米厚的聚氨酯发泡材料整体发泡而成,外壳用1.0毫米厚的防火防撞防潮铝合金保护板,整个蓄冰桶由聚氨酯发泡成为一个整体,具有强度高,保温性能好的特征;蓄冰筒的关键导热材料均系国外特殊定制进口,工厂化批量生产能保证每一个蓄冰筒性能完全一致;蓄冰筒采用逆流热交换器平均控制法,在结冰的过程中,水不会被冰包围,冰块可以自由滑动,因而避免产生应力或冻坏冰筒。
常用冷媒为乙二醇的水溶液。
9、双工况主机是什么意思
双工况主机是采用同一台主机,白天用于制冷,夜间用于制冰。
系统情况该建筑物为写字楼,原常规空调时,其建筑面。设计日最大负荷值为248RT,所选主kcalh冷水机组2台。主机工作时间为8:00~18:00,由于后来增加建筑面积2000m设计日最大负荷值为357.6RT,但此时机房已无法增设主机,而室外有空地埋设蓄冰设备。因此决定把原常规空调系统改造成蓄冰空调系统,采用部分蓄冷。主机工作时间除原8:00~18:00制冷运行外,其它时间还需蓄冰运行。这样的运行方式满足了增加2000m后空调负荷的要求。
制冷、制冰工况的确定,制冰工况的确定制冰工况运行均在夜间,冷却水温较白天有所降低,故冷却水进水温度取30℃。一般水冷凝器进、出水温差为4~6℃,此处取5℃。由于制冷机冷凝器的排热量约为蒸发器制冷量的1.2~1.3倍,低温载冷剂进、出口温差应小些,取4℃。对于蓄冰设备,在蓄冰初期有一个过冷现象,过冷度一般为-2~-4℃,故低温载冷剂出口温度取-6℃。
两种工况制冷循环计算根据蓄冰工况以及冷凝温度等于冷却水进、出水平均温度加上5~7℃,蒸发温度等于冷冻水出口温度减2~4℃。则:空调工况:t蓄冰工况:t计算时不考虑制冷剂的过热和过冷,以饱和理论制冷循环为依据,制冷剂为R22,30×10的冷水机组的计算结果.可知对主机的制造要求和运行控制的不同。
10、“双工况制冷机组”是什么意思?
双工况制冷机组一般指的是可以适用两种不同工作状态的空调机组。