导航:首页 > IDC知识 > idc架构

idc架构

发布时间:2020-08-03 09:28:48

1、IDC基础设施架构师是做什么的?

很唬人的名字,不过实际工作就是机房网管。
这个东西还是有些门道的,如果没有相关工作经验,肯定没法冒充有经验。如果有思科之类的网管证书,那么也算有优势。如果没有这些证书,那么你只能拿网络知识来对付了,不过这个工作很需要经验,没有人带过,直接上手困难。

2、"什么是idc,什么是服务器

1、 IDC一般指互联网数据中心
IDC为互联网内容提供商(ICP)、企业、媒体和各类网站提供大规模、高质量、安全可靠的专业化服务器托管、空间租用、网络批发带宽以及ASP、EC等业务。IDC是对入驻(Hosting)企业、商户或网站服务器群托管的场所;是各种模式电子商务赖以安全运作的基础设施,也是支持企业及其商业联盟(其分销商、供应商、客户等)实施价值链管理的平台。 名词解释(业务理解非演讲内容) ICP:互联网信息服务,比如新浪、搜狐、网易。互联网信息服务可分为经营性信息服务和非经营性信息服务两类。
2、服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。
服务器的构成包括处理器、硬盘、内存、系统总线等,和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
在网络环境下,根据服务器提供的服务类型不同,分为文件服务器,数据库服务器,应用程序服务器,WEB服务器等。

3、什么是idc idc有什么业务

互联网数据中心(Internet Data Center)简称IDC,就是电信部门利用已有的互联网通信线路、带宽资源,建立标准化的电信专业级机房环境,为企业、政府提供服务器托管、租用以及相关增值等方面的全方位服务。

IDC的业务简介:

业务包括:主机、服务器、托管、虚拟主机、域名注册、企业邮局、邮件系统。

增值服务:主机托管、idc、大型知识库、会员管理、系统集成、虚拟主机、sql数据库、vpn虚拟专网、web 应用程序、电子支付、国际域名、国内域名、商业网站、网页设计公司、web 服务、后台管理、邮件服务器、网页设计模板。

(3)idc架构扩展资料:

特征:

IDC有两个非常重要的显著特征:在网络中的位置和总的网络带宽容量,它构成了网络基础资源的一部分,就像骨干网、接入网一样,它提供了一种高端的数据传输(Data Delivery)的服务,提供高速接入的服务。

IDC起源于ICP对网络高速互联的需求,而且美国仍然处于世界领导者位置。在美国,运营商为了维护自身利益,将网络互联带宽设得很低,用户不得不在每个服务商处都放一台服务器。为了解决这个问题,IDC应运而生,保证客户托管的服务器从各个网络访问速度都没有瓶颈。

4、数据中心概念

数据中心是全球协作的特定设备网络,用来在internet网络基础设施上传递、加速、展示、计算、存储数据信息。

数据中心是一整套复杂的设施。它不仅仅包括计算机系统和其它与之配套的设备(例如通信和存储系统),还包含冗余的数据通信连接、环境控制设备、监控设备以及各种安全装置”。

数据中心就像多功能的建筑物,能容纳多个服务器以及通信设备。这些设备被放置在一起是因为它们具有相同的对环境的要求以及物理安全上的需求,并且这样放置便于维护”,而“并不仅仅是一些服务器的集合"。

5、数据中心架构图怎么画?

看了 很多下面这个应该是最标准的,参照画就可以了额。工具嘛viso 即可

6、什么是数据中心?

数据中心可以分为二种,一是可以上网,也就是可以访问公网的,二是不上网,只用做数据存放;也就是我们通俗讲的IDC/DC。
IDC 通常可以被定义为一
种拥有完善的设备(包括高速互联网接入带宽、高性能局域网
络、安全可靠的机房环境等)、专业化的管理、完善的应用级服
务的服务平台
DC常被和DR放在一起,这种数据中心主要是用做数据备份,冗余,数据恢复之用.

7、IDC基础运维和IT运维的区别?

1.普通运维(服务器、存储、网络管理等)的基础上,加强了对具体的软件产品的了解,能与研发工程师一起进行软硬件部署架构的设计、性能测试、产品部署上线、平时产品线上的故障监测和侦错等工作。

2.所以除了基本的服务器、数据库操作能力之外,还需要了解一些软件设计、性能测试优化的知识,如果有相关行业领域里的知识和脚本编写能力就更好了。

3.通过监控和侦错保证产品的稳定性,降低故障发生率,进而提高产品的运维效率,降低运维的支出,这些可以看作考核应用运维的几个方面。

8、数据中心是什么?其系统结构和工作原理是怎样的呢?

一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。
先大概列一下互联网行业数据仓库、数据平台的用途:

整合公司所有业务数据,建立统一的数据中心;

提供各种报表,有给高层的,有给各个业务的;

为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;

为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;

分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;

开发数据产品,直接或间接为公司盈利;

建设开放数据平台,开放公司数据;

。。。。。。


上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;
其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;
建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。
整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:

请点击输入图片描述

逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。
我们从下往上看:
数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。

数据源的种类比较多:

网站日志:


作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,
一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;

业务数据库:


业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapRece来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。
当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。

来自于Ftp/Http的数据源:


有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;

其他数据源:


比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成;

数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。

离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapRece要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;
当然,使用Hadoop框架自然而然也提供了MapRece接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapRece来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapRece要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》
实时计算部分,后面单独说。
数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;

前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据; 和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。
另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。

数据应用

业务产品


业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;

报表


同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;

即席查询


即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;
这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。
即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。
当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。

OLAP


目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;
这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;
比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。

其它数据接口


这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。

实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。
 我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。
做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。
任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;

这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始; 这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。
前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。
总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。

与idc架构相关的知识