導航:首頁 > 網站優化 > 正定SEO

正定SEO

發布時間:2020-08-30 23:23:05

1、目標函數是正的凸函數,約束函數是負的凸函數,可以用cvx 求解嗎

 
其幾何意義表示為:如果集合C中任意2個元素連線上的點也在集合C中,則C為凸集。其示意圖如下所示:

常見的凸集有:
n維實數空間;一些范數約束形式的集合;仿射子空間;凸集的交集;n維半正定矩陣集;這些都可以通過凸集的定義去證明。
凸函數的定義為:

其幾何意義表示為函數任意兩點連線上的值大於對應自變數處的函數值,示意圖如下:

凸函數的一階充要條件為:

其中要求f一階可微。
二階充要條件為:

其中要求f二階可微,表示二階導數需大於0才是凸函數。
按照上面的兩個定義,如果f(x)=x^2肯定是凸函數,而g(x) = -x^2是非凸函數。也就是說開口向下的函數是非凸函數,但是對於這種情況可以通過添加負號變成凸函數,從而求解。
常見的凸函數有:指數函數族;非負對數函數;仿射函數;二次函數;常見的范數函數;凸函數非負加權的和等。這些可以採用上面2個充要條件或者定義去證明。
凸優化問題(OPT)的定義為:

即要求目標函數是凸函數,變數所屬集合是凸集合的優化問題。或者目標函數是凸函數,變數的約束函數是凸函數(不等式約束時),或者是仿射函數(等式約束時)。
對於凸優化問題來說,局部最優解就是全局最優解。
常見的凸優化問題包括:
線性規劃(LP):該問題是優化下面的式子:

其中那個不常見的奇怪符號表示按元素小於等於,後面出現類似符號可以類似理解。
二次規劃(QP):該問題是優化下面的式子:

二次約束的二次規劃(QCQP):該問題是優化下面的式子:

半正定規劃(SDP):該問題是優化下面的式子:

2、混沌優化演算法可以求解全局最優解嗎

非線性最優化問題的一種混合解法

摘 要:把BFGS方法與混沌優化方法相結合,基於混沌變數提出一種求解具有變數邊界約束非線性最優化問題的混合優化方法。混合演算法兼顧了混沌優化全局搜索能力強和BFGS方法收斂速度快的優點,成為一種求解非凸優化問題全局最優的有效方法。算例表明,當混沌搜索的次數達到一定數量時,混合優化方法可以保證演算法收斂到全局最優解,且計算效率比混沌優化方法有很大提高。

關鍵詞:混合法;BFGS方法;混沌優化方法;全局最優

1 引言
在系統工程、控制工程、統計學、反問題優化求解等領域中,很多問題是具有非凸性的。對此普通的優化技術只能求出局部最優解,因為這些確定性演算法總是解得最近的一個極值點[1],只有能夠給出很好的初始點才有可能得出所需要的全局最優解。為此,實際應用中通過在多個初始點上使用傳統數值優化方法來求取全局解的方法仍然被人們所採用,但是這種處理方法求得全局解的概率不高,可靠性低,建立盡可能大概率的求解全局解演算法仍然是一個重要問題。近年來基於梯度法的全局最優化方法已經有所研究[2],基於隨機搜索技術的遺傳演算法和模擬退火演算法等在全局優化問題中的應用也得到越來越大的重視[3-4]。本文則基於混沌優化和BFGS方法,提出一種求解具有簡單界約束最優化問題(1)的混合演算法。
混沌是存在於非線性系統中的一種較為普遍的現象。混沌運動宏觀上無序無律,具有內隨機性、非周期性和局部不穩定性,微觀上有序有律,並不是完全的隨機運動,具有無窮嵌套的自相似幾何結構、存在普適性規律,並不是雜亂無章的。利用混沌變數的隨機性、遍歷性和規律性特點可以進行優化搜索[5],且混沌優化方法容易跳出局部最優點。但是某些狀態需要很長時間才能達到,如果最優值在這些狀態時,計算時間勢必很長[5]。可以說混沌優化具有全局搜索能力,其局部搜索能力稍顯不足,文[5]採用二次載波技術,文[6]考慮逐漸縮小尋優變數的搜索空間都是為了彌補這一弱點。而本文則採用混沌搜索與BFGS方法進行優化求解,一方面採用混沌搜索幫助BFGS方法跳出局部最優,另一方面利用BFGS增強解附近的超線性收斂速度和搜索能力,以提高搜索最優的效率。
2 混沌-BFGS混合優化方法
2.1 BFGS方法
作為求解無約束最優化問題的擬牛頓方法類最有代表性的演算法之一,BFGS方法處理凸非線性規劃問題,以其完善的數學理論基礎、採用不精確線性搜索時的超線性收斂性和處理實際問題有效性,受到人們的重視[7-9]。擬牛頓方法使用了二階導數信息,但是並不直接計算函數的Hesse矩陣,而是採用一階梯度信息來構造一系列的正定矩陣來逼近Hesse矩陣。BFGS方法求解無約束優化問題min()的主要步驟如下:
(1) 給變數賦初值x0,變數維數n和BFGS方法收斂精度ε,令B0=I(單位陣),k=0,計算在點x0的梯度g0。
(2) 取sk=-Bk-1gk,沿sk作一維搜索,確定最優步長αk,,得新點xk+1=xk+αksk,計算xk+1點的梯度gk+1。
(3) 若||gk+1||≤ε,則令,,BFGS搜索結束,轉步驟3;否則執行(4)。
(4) 計算Bk+1:
(2)
(3)
(5) k=k+1,轉(2)。
2.2 混沌優化方法
利用混沌搜索求解問題(1)時,先建立待求變數與混沌變數的一一對應關系,本文採用。然後,由Logistic映射式(4)產生個軌跡不同的混沌變數()進行優化搜索,式(4)中=4。已經證明,=4是「單片」混沌,在[0,1]之間歷遍。
(4)
(1)給定最大混沌變數運動次數M;給賦初值,計算和;置,。
(2) 。
(3) 。
(4) 若k<M,
若,令,;
若,和保持不變;
然後令k=k+1,,轉(2)。
若k>M,則,,混沌搜索結束。
2.3 混合優化方法
混沌方法和BFGS方法混合求解連續對象的全局極小值優化問題(1)的步驟如下:
step1 設置混沌搜索的最大次數M,迭代步數iter=0,變數賦初值x0,。
step2 以為始點BFGS搜索,得當前BFGS方法最優解及=。
step3 若,取=;若,取;若,取,是相對於,較小的數。
step 4 以為始點進行混沌搜索M次,得混沌搜索後的最優解及=。
step5 若<,iter=iter+1,,轉step2;否則執行step6。
step6 改變混沌搜索軌跡,再次進行混沌搜索,即給加微小擾動,執行step 4,得搜索結果和。若<,iter=iter+1,,轉step2;否則計算結束,輸出、。
對全局極大值問題,max ,可以轉化為求解全局極小問題min 。
混合演算法中混沌搜索的作用是大范圍宏觀搜索,使得演算法具有全局尋優性能。而BFGS搜索的作用是局部地、細致地進行優化搜索,處理的是小范圍搜索問題和搜索加速問題。
3 算例

圖 1 函數-特性示意圖 圖 2 函數特性示意圖
採用如下兩個非常復雜的、常用於測試遺傳演算法性能的函數測試本文演算法:

函數稱為Camel 函數,該函數有6個局部極小點(1.607105, 0.568651)、(-1.607105, -0.568651)、(1.703607, -0.796084)、(-1.703607, 0.796084)、(-0.0898,0.7126)和(0.0898,-0.7126),其中(-0.0898,0.7126)和(0.0898,-0.7126)為兩個全局最小點,最小值為-1.031628。函數稱為 Schaffer's函數,該函數有無數個極大值,其中只有(0,0)為全局最大點,最大值為1。此函數的最大峰值周圍有一圈脊,它們的取值均為0.990283,因此很容易停留在此局部極大點。文獻[10]採用該函數對該文提出的基於移動和人工選擇的改進遺傳演算法(GAMAS)其性能進行了考察,運行50次,40%的情況下該函數的唯一全局最優點能夠找到。而採用本文混合演算法,由計算機內部隨機函數自動隨機生產100個不同的初始點,由這些初始點出發,一般混合演算法迭代2-4次即能夠收斂。M取不同數值時對函數、的計算結果分別如表1和表2所示,表中計算時間是指在奔騰133微機上計算時間。
由表2可見,當M=1500時,本文方法搜索到最優解的概率即達到40%,而此時計算量比文獻[10]小。同樣由混合演算法的100個起始點,採用文獻[5]的演算法對函數優化計算100次,以作為收斂標准,混沌搜索50000次,計算結果為67次搜索到最優解,概率為67%,平均計算時間為1.2369s。而即使保證混合演算法100次全收斂到最優解所花費的平均計算時間也只為0.2142s(表1),可見混合演算法優於文獻[5]的方法。
表1 M取不同數值時函數的計算結果
_____________________________________________________________________
M 搜索到全局最優點的次數 搜索到最優的概率 平均計算時間
(-0.0898,0.7126) (0.0898,-0.7126)
_____________________________________________________________________________________________
1000 44 39 83% 0.1214s
3000 53 45 98% 0.1955s
5000 53 47 100% 0.2142s
________________________________________________________________________________________________

表2 M取不同數值時函數的計算結果
___________________________________________________________
M 搜索到全局最優點的次數 搜索到最優的概率 平均計算時間
____________________________________________________________________________________
1500 40 40% 0.1406s
5000 73 73% 0.2505s
10000 88 88% 0.4197s
50000 100 100% 1.6856s
____________________________________________________________________________________

4 計算結果分析
由表1和表2可見,混合演算法全局尋優能力隨M的增加而增大,當M達到某一足夠大的數值Mu後,搜索到全局最優的概率可以達到100%。
從理論上說,Mu趨向無窮大時,才能使混沌變數遍歷所有狀態,才能真正以概率1搜索到最優點。但是,本文混沌運動M次的作用是幫助BFGS方法跳出局部最優點,達到比當前局部最優函數值更小的另一局部最優附近的某一點處,並不是要混沌變數遍歷所有狀態。由混沌運動遍歷特性可知,對於某一具體問題,Mu達到某一具體有限數值時,混沌變數的遍歷性可以得到較好模擬,這一點是可以滿足的,實際算例也證實了這一點。
由於函數性態、復雜性不同,對於不同函數,如這里的測試函數、,數值Mu的大小是有差別的。對於同一函數,搜索區間增大,在相同混沌運動次數下,即使始點相同,總體而言會降低其搜索到全局最優的概率,要保證演算法仍然以概率1收斂到全局最優,必然引起Mu 增大。跟蹤計算中間結果證實,當M足夠大時,混合演算法的確具有跳出局部最優點,繼續向全局最優進行搜索的能力;並且混合演算法的計算時間主要花費在為使混合演算法具有全局搜索能力而進行混沌搜索上。
5 結語
利用混沌變數的運動特點進行優化,具有非常強的跳出局部最優解的能力,該方法與BFGS方法結合使用,在可以接受的計算量下能夠計算得到問題的最優解。實際上,混沌優化可以和一般的下降類演算法結合使用,並非局限於本文採用的BFGS方法。採用的Logistic映射產生混沌變數序列,只是產生混沌變數的有效方式之一。
混沌運動與隨機運動是不同的。混沌是確定性系統中由於內稟隨機性而產生的一種復雜的、貌似無規的運動。混沌並不是無序和紊亂,更像是沒有周期的秩序。與隨機運動相比較,混沌運動可以在各態歷經的假設下,應用統計的數字特徵來描述。並且,混沌運動不重復地經過同一狀態,採用混沌變數進行優化比採用隨機變數進行優化具有優勢。
混沌優化與下降類方法結合使用是有潛力的一種全局優化途徑,是求解具有變數界約束優化問題的可靠方法。如何進一步提高搜索效率,以及如何把混沌優化有效應用於復雜約束優化問題是值得進一步研究的課題。
本文演算法全局收斂性的嚴格數學證明正在進行之中。
參考文獻
[1]胡山鷹,陳丙珍,何小榮,沈靜珠.非線性規劃問題全局優化的模擬退火法[J].清華大學學報,37(6),1997,5-9.
[2]C A Floudas, A Aggarwal, A R Ciric. Global optimum search for nonconvex NLP and MINLP problems[J]. Comput Chem Engng. 1989, 13(10), 1117~1132.
[3]康立山,謝雲,尤矢勇等.非數值並行演算法(第一冊)――模擬退火演算法[M].北京:科學出版社,1998.
[4]劉勇,康立山,陳琉屏.非數值並行演算法(第二冊)――遺傳演算法[M].北京:科學出版社,1998.
[5]李兵,蔣慰孫.混沌優化方法及其應用[J].控制理論與應用,14(4),1997,613-615.
[6]張彤,王宏偉,王子才.變尺度混沌優化方法及其應用[J].控制與決策,14(3),1999,285-287.
[7]席少霖.非線性最優化方法[M].北京:高等教育出版社,1992.
[8]席少霖,趙鳳志.最優化計算方法[M].上海:上海科學技術出版社,1983.
[9]Press W H, Tenkolsky S A, Vetterling W T, Flannery B P.Numerical Recipes in C, The Art of Scientific Computing[M]. Second edition, Cambridge University Press, 1992.
[10]J C Ports.The development and evaluation of an improved genetic algorithm based on migration and artificial selection[J].IEEE Trans. Syst. Man and Cybern..1994, 24(1),73-85.
A Hybrid Approach for Nonlinear Optimization
Abstract:Combined BFGS method with chaos optimization method, a hybrid approach was proposed to solve nonlinear optimization problems with boundary restraints of variables. The hybrid method is an effective approach to solve nonconvex optimization problems, as it given both attentions to the inherent virtue to locate global optimum of chaos optimization method and the advantage of high convergence speed of BFGS method. Numerical examples illustrate that the present method possesses both good capability to search global optima and far higher convergence speed than that of chaos optimization method.

3、基於matlab的無線網路優化設計

基於MATLAB和PRO/ENGINEER優化設計實例解析(貨號:10703715)
我做畢業設計就是這個題目,這本書介紹了:優化設計是將數學規劃理論和計算機技術應用在工程設計中,從大量的可行設計方案中自動尋找出最佳設計方案,從而獲得顯著的技術和經濟效益的一種現代設計法。本書力圖從技術應用的特點和層次出發,講解優化設計應用有關的問題,注重優化問題的技術應用。該書還針對技術應用特色,加強了基於工程設計軟體Pro/ENGINEER和MATLAB的結構參數優化設計內容,本書中包含了作者進行科研和結合企業生產實踐技術應用的成果,如優化問題的幾何描述、多目標優化的規格化加權等。為方便優化技術的計算機輔助應用,書中還講述了優化設計數學基礎中的函數梯度和模、海賽矩陣和正定性的計算,在常用優化設計方法中的黃金分割法等,並都附有MATLAB的計算程序和運行示例說明。

4、最優化問題的證明題 球大神解答

我的理解,就經濟學來說,博弈論是方法,最優化是方法的方法。博弈論有具體含義,應用於特定情況;最優化作為一個更為根本的分枝,其應用范圍更大更廣。我的博弈論老師就是數學系研究最優化演算法出身,他經常用最優化裡面的方法來求解博弈論。至於重復博弈中的「收斂到均衡點」與最優化方法中的「收斂到最優解」的關系,我理解,使前者達到均衡點的「策略」類比於使後者達到最優解的「演算法」,並且都可能不是唯一的。

與正定SEO相關的知識