1、圖像分析的分析過程
如圖為一個分級的圖像分析過程的模型。圖像分析基本上有四個過程。①感測器輸入:把實際物景轉換為適合計算機處理的表達形式,對於三維物景也是把它轉換成二維平面圖像進行處理和分析(見圖像表示)。②分割:從物景圖像中分解出物體和它的組成部分(見圖像分割)。組成部分又由圖像基元構成。把物景分解成這樣一種分級構造,需要應用關於物景中對象的知識。一般可以把分割看成是一個決策過程,它的演算法可分為像點技術和區域技術兩類。像點技術是用閾值方法對各個像點進行分類,例如通過像點灰度和閾值的比較求出文字圖像中的筆劃。區域技術是利用紋理、局部地區灰度對比度等特徵檢出邊界、線條、區域等,並用區域生長、合並、分解等技術求出圖像的各個組成成分。此外,為了進一步考察圖像整體在分割中的作用,還研究出鬆弛技術等方法。③識別:對圖像中分割出來的物體給以相應的名稱,如自然物景中的道路、橋梁、建築物或工業自動裝配線上的各種機器零件等。一般可以根據形狀和灰度信息用決策理論和結構方法進行分類,也可以構造一系列已知物體的圖像模型,把要識別的對象與各個圖像模型進行匹配和比較。④解釋:用啟發式方法或人機交互技術結合識別方法建立物景的分級構造,說明物景中有些什麼物體,物體之間存在什麼關系。在三維物景的情況下,可以利用物景的各種已知信息和物景中各個對象相互間的制約關系的知識。例如,從二維圖像中的灰度陰影、紋理變化、表面輪廓線形狀等推斷出三維物景的表面走向;也可根據測距資料,或從幾個不同角度的二維圖像進行景深的計算,得出三維物景的描述和解釋。
2、掃描電鏡圖片如何分析
第一、掃描電鏡照片是灰度圖像,分為二次電子像和背散射電子像,主要用於表面微觀形貌觀察或者表面元素分布觀察。
一般二次電子像主要反映樣品表面微觀形貌,基本和自然光反映的形貌一致,特殊情況需要對比分析。
背散射電子像主要反映樣品表面元素分布情況,越亮的區域,原子序數越高。
第二、看錶面形貌,電子成像,亮的區域高,暗的區域低。非常薄的薄膜,背散射電子會造成假像。導電性差時,電子積聚也會造成假像。
3、圖像識別是怎麼的運行原理?
圖像的組成:圖像由什麼組成的,這個問題不是通常意義上的概念,它不是指圖片裡面有什麼我們可以看到的東西,而是圖像的光學組成概念。即圖像是由很多具備色彩種類、亮度等級等信息的基本像素點所組成的。
圖像的識別:計算機初始狀態只能識別像素點上的基本信息,這個和生物的視覺是一樣的,生物之所以可以分辨物體是由於生物神經系統對原始圖像處理後的結果。而計算機的圖像識別也是一個將原始光學信息進行邏輯分類處理的過程。
【圖為大腦神經元】
圖像識別的要點: 圖像識別編程就是對原始圖像點信息的綜合處理,圖像識別通常有輪廓識別、特徵識別、色彩識別、材質識別、物體識別等等。一般根據顏色、亮度等信息得出物體的輪廓,依據輪廓所對應的數據來確定輪廓的內容是什麼物體或是什麼特徵,及特徵及物體的判斷離不開輪廓及對應邏輯數據的處理。而材質識別的特點是根據問題的反光程度來識別,其同樣離不開輪廓的識別及邏輯數據的判斷。因此在圖像識別中,輪廓識別是重中之重。
圖像識別編程的要點:圖像識別編程時務必將通常的圖像概念刻意淡化而側重為視覺數據的邏輯化,並通宵人類識別數據是的依據。即人腦識別圖像的邏輯判斷依據從而得出正確的邏輯編程思路。
圖片編程的注意事項:圖片編程時不要將簡單的處理繁雜化,同時明確要識別圖像的目的及可以忽略細節的程度。盡量避免非邏輯必備信息的參雜,這個對於需要高速識別內容的項目尤為重要。
4、SEM掃描電鏡圖怎麼看,圖上各參數都代表什麼意思
1、放大率:
與普通光學顯微鏡不同,在SEM中,是通過控制掃描區域的大小來控制放大率的。如果需要更高的放大率,只需要掃描更小的一塊面積就可以了。放大率由屏幕/照片面積除以掃描面積得到。
所以,SEM中,透鏡與放大率無關。
2、場深:
在SEM中,位於焦平面上下的一小層區域內的樣品點都可以得到良好的會焦而成象。這一小層的厚度稱為場深,通常為幾納米厚,所以,SEM可以用於納米級樣品的三維成像。
3、作用體積:
電子束不僅僅與樣品表層原子發生作用,它實際上與一定厚度范圍內的樣品原子發生作用,所以存在一個作用「體積」。
4、工作距離:
工作距離指從物鏡到樣品最高點的垂直距離。
如果增加工作距離,可以在其他條件不變的情況下獲得更大的場深。如果減少工作距離,則可以在其他條件不變的情況下獲得更高的解析度。通常使用的工作距離在5毫米到10毫米之間。
5、成象:
次級電子和背散射電子可以用於成象,但後者不如前者,所以通常使用次級電子。
6、表面分析:
歐革電子、特徵X射線、背散射電子的產生過程均與樣品原子性質有關,所以可以用於成分分析。但由於電子束只能穿透樣品表面很淺的一層(參見作用體積),所以只能用於表面分析。
表面分析以特徵X射線分析最常用,所用到的探測器有兩種:能譜分析儀與波譜分析儀。前者速度快但精度不高,後者非常精確,可以檢測到「痕跡元素」的存在但耗時太長。
觀察方法:
如果圖像是規則的(具螺旋對稱的活體高分子物質或結晶),則將電鏡像放在光衍射計上可容易地觀察圖像的平行周期性。
尤其用光過濾法,即只留衍射像上有周期性的衍射斑,將其他部分遮蔽使重新衍射,則會得到背景干擾少的鮮明圖像。
(4)根據sem圖像分析原理擴展資料:
SEM掃描電鏡圖的分析方法:
從干擾嚴重的電鏡照片中找出真實圖像的方法。在電鏡照片中,有時因為背景干擾嚴重,只用肉眼觀察不能判斷出目的物的圖像。
圖像與其衍射像之間存在著數學的傅立葉變換關系,所以將電鏡像用光度計掃描,使各點的濃淡數值化,將之進行傅立葉變換,便可求出衍射像〔衍射斑的強度(振幅的2乘)和其相位〕。
將其相位與從電子衍射或X射線衍射強度所得的振幅組合起來進行傅立葉變換,則會得到更鮮明的圖像。此法對屬於活體膜之一的紫膜等一些由二維結晶所成的材料特別適用。
掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接受、放大和顯示成像,獲得測試試樣表面形貌的觀察。
5、電子掃描顯微鏡(SEM)的工作原理???
掃描電鏡是用聚焦電子束在試樣表面逐點掃描成像。試樣為塊狀或粉末顆 粒,成像信號可以是二次電子、背散射電子或吸收電子。其中二次電子是最主要的成像信號。由電子槍發射的能量為 5 ~ 35keV 的電子,以其交 叉斑作為電子源,經二級聚光鏡及物鏡的縮小形成具有一定能量、一定束流強度和束斑直徑的微細電子束,在掃描線圈驅動下,於試樣表面按一定時間、空間順 序作柵網式掃描。聚焦電子束與試樣相互作用,產生二次電子發射(以及其它物理信號),二次電子發射量隨試樣表面形貌而變化。二次電子信號被探測器收集 轉換成電訊號,經視頻放大後輸入到顯像管柵極,調制與入射電子束同步掃描的顯像管亮度,得到反映試樣表面形貌的二次電子像。
示意圖:
http://www.science.globalsino.com/1/images/1science9682.jpg