1、關於SEM掃描電鏡的幾個問題,求大神出現...
如果是即將開始學習儀器操作的管理人員,建議先系統學習理論知識,再找專業的儀器工程師培訓。如果是學生,要使用電鏡,從安全形度考慮,1、2、3幾項通常是值機人員完成的。我可以簡單的向你介紹一下:1、主要是電源,只要能正常開機,一般無問題;2、加高壓前一般要達到額定真空,否則氣體電離度大、損傷電子槍,但是電鏡軟體一般都已經設置好,不到工作真空,根本加不上去高壓,所以只要能夠加高壓,也無其他特別的問題;做完電鏡關閉高壓,等30秒以上,待燈絲冷卻後再放氣為宜,主要也是為了保護電子槍;3、樣品台有它的額定移動距離,包括平面方向和上下方向,平面方向移動到極限時會有報警提示,看到提示往回移動即可。高度方向也如此,但是要注意向上移動時,要緩慢,要防止堅硬的試樣撞擊上方的探測器和極靴,損壞設備;4,電子束與試樣作用,可激發出多種信號,如二次電子信號(用於形貌觀察),背散射電子信號(用於區分微區成分)、俄歇電子信號(用於表面元素分析)、特徵X射線(用於內部元素分析)、陰極熒光(用於發光材料研究),這些信號已經被有效的加以利用,這是一門獨立的學科,若需要詳細了解,你需要系統地學習一下。
2、掃描電鏡
掃描電子顯微鏡(SEM)是1965年以後才迅速發展起來的新型電子儀器。其主要特點可歸納為:①儀器解析度高;②儀器的放大倍數范圍大,一般可達15~180000倍,並在此范圍內連續可調;③圖像景深大,富有立體感;④樣品制備簡單,可不破壞樣品;⑤在SEM上裝上必要的專用附件——能譜儀(EDX),以實現一機多用,在觀察形貌像的同時,還可對樣品的微區進行成分分析。
一、掃描電子顯微鏡(SEM)的基本結構及原理
掃描電鏡基本上是由電子光學系統、信號接收處理顯示系統、供電系統、真空系統等四部分組成。圖13-2-1是它的前兩部分結構原理方框圖。電子光學部分只有起聚焦作用的匯聚透鏡,它們的作用是用信號收受處理顯示系統來完成的。
圖13-2-1 SEM的基本結構示意圖
在掃描電鏡中,電子槍發射出來的電子束,經3個電磁透鏡聚焦,成直徑為20 μm~25 Å的電子束。置於末級透鏡上部的掃描線圈能使電子束在試樣表面上做光柵狀掃描。試樣在電子束作用下,激發出各種信號,信號的強度取決於試樣表面的形貌、受激區域的成分和晶體取向。試樣附近的探測器把激發出的電子信號接受下來,經信號處理放大系統後,輸送到陰極射線管(顯像管)的柵極以調制顯像管的亮度。由於顯像管中的電子束和鏡筒中的電子束是同步掃描的,顯像管亮度是由試樣激發出的電子信號強度來調制的,由試樣表面任一點所收集來的信號強度與顯像管屏上相應點亮度一一對應,因此試樣狀態不同,相應的亮度也必然不同。由此,得到的像一定是試樣形貌的反映。若在試樣斜上方安置的波譜儀和能譜儀,收集特徵X射線的波長和能量,則可做成分分析。
值得注意的是,入射電子束在試樣表面上是逐點掃描的,像是逐點記錄的,因此試樣各點所激發出來的各種信號都可選錄出來,並可同時在相鄰的幾個顯像管上或X—Y記錄儀上顯示出來,這給試樣綜合分析帶來極大的方便。
二、高能電子束與樣品的相互作用
並從樣品中激發出各種信息。對於寶石工作者,最常用的是二次電子、背散射電子和特徵X射線。上述信息產生的機理各異,採用不同的檢測器,選擇性地接收某一信息就能對樣品進行成分分析(特徵X射線)或形貌觀察(二次電子和背散射電子)。這些信息主要有以下的特徵:
1.二次電子(SE)
從距樣品表面100 Å左右的深度范圍內激發的低能量電子(一般為0~50 eV左右)發生非彈性碰撞。二次電子像是SEM中應用最廣、解析度最高的一種圖像,成像原理亦有一定的代表性。高能入射電子束(一般為10~35 keV)由掃描線圈磁場的控制,在樣品表面上按一定的時間、空間順序作光柵式掃描,而從試樣中激發出二次電子。被激發出的二次電子經二次電子收集極、閃爍體、光導管、光電倍增管以及視頻放大器,放大成足夠強的電信號,用以調制顯像管的亮度。由於入射電子束在樣品上的掃描和顯像管的電子束在熒光屏上的掃描用同一個掃描發生器調制,這就保證了樣品上任一物點與熒光屏上任一「像點」在時間與空間上一一對應;同時,二次電子激發量隨試樣表面凹凸程度的變化而變化,所以,顯像管熒光屏上顯現的是一幅明暗程度不同的反映樣品表面形貌的二次電子像。由於二次電子具有低的能量,為了收集到足夠強的信息,二次電子檢測器的收集必須處於正電位(一般為+250 V ),在這個正電位的作用下,試樣表面向各個方向發射的二次電子都被拉向收集極(圖13-2-2a),這就使二次電子像成為無影像,觀察起來更真實、更直觀、更有立體感。
2.背散射電子(BE)
從距樣品表面0.1~1 μm的深度范圍內散射回來的入射電子,其能量近似等於原入射電子的能量發生彈性碰撞。背散射電子像的成像過程幾乎與二次電子像相同,只不過是採用不同的探測器接收不同的信息而已,如圖13-2-2所示。
圖13-2-2 二次電子圖像和背散射電子圖像的照明效果
(據S.Kimoto,1972)
a:二次電子檢測方法;a′:二次電子圖像的照明效果;b:背散射電子檢測方法;b′:背散射電子圖像的照明效果
3.特徵X射線
樣品中被激發了的元素特徵X射線釋放出來(發射深度在0.5~5μm范圍內)。而要對樣品進行微區的元素的成分分析,則需藉助於被激發的特徵X射線。這就是通常所謂的「電子探針分析」,又通常把測定特徵X射線波長的方法叫波長色散法(WDS);測定特徵X射線能量的方法叫能量色散法(EDS)。掃描電子顯微鏡除了可運用於寶玉石的表面形貌外,它經常帶能譜(EDS)做成分分析。EDS主要是由高效率的鋰漂移硅半導體探測器、放大器、多道脈沖高度分析器和記錄系統組成。樣品被激發的特徵X射線,入射至鋰漂移硅半導體探測器中,使之產生電子—空穴對,然後轉換成電流脈沖,放大,經多道脈沖高度分析器按能量高低將這些脈沖分離,由這些脈沖所處的能量位置,可知試樣所含的元素的種類,由具有相應能量的脈沖數量可知該元素的相對含量。利用此方法很容易確定寶石礦物的成分。
掃描電鏡若帶有能譜(EDS)則不但可以不破壞樣品可運用於做寶玉石形貌像,而且還能快速做成分分析(如圖13-2-3,廖尚儀,2001)。因此它是鑒定和區別相似寶玉石礦物的好方法,如紅色的鎂鋁榴石,紅寶石、紅尖晶石、紅碧璽等,因為它們的成分不同,其能譜(EDS)圖也就有較大的區別。波譜(WDS)定量分析比能譜(EDS)定量分析精確,但EDS分析速度快。
圖13-2-3 藍色鉀-鈉閃石的能譜圖
三、SEM的微形貌觀察
1.樣品制備
如果選用粉狀樣,需要事先選擇好試樣台。如果是塊狀樣,最大直徑一般不超過15mm。如果單為觀察形貌像,直徑稍大一些(39mm)仍可以使用,但試樣必須導電。如果是非導電體試樣,必須在試樣表面覆蓋一層約200 Å厚度的碳或150 Å的金。
2.SEM形貌像的獲得
圖13-2-4 掃描電子顯微鏡下石英(a)和藍色閃石玉(b)的二次電子像
觀察試樣的形貌,常用二次電子像或背散射電子像。圖13-2-4是石英(a)和藍色閃石玉(鉀-鈉閃石b)的二次電子像。同時由於二次電子像具有較高的解析度和較高的放大倍數,因此,比背散射電子像更為常用。而成分分析則常採用背散射電子像。
3、掃描電鏡sem的主要原理是什麼?測試過程需要重點注意哪些操作
電鏡的原理是:電子槍發出電子束打到樣品表面,激發出二次電子、背散射電子、X-ray等特徵信號,經收集轉化為數字信號,得到相應的形貌或成分信息。
測試注意事項:
1、新人找別人幫忙測試時,
明確自己的測試內容,如何樣品前處理,測試時間,然後跟測試相關人員聯系確定能否滿足你的測試需求
2、新人自己操作測試時,
明確自己的測試內容,如何樣品前處理,測試時間,
測試時注意樣品乾燥潔凈,操作時樣品和樣品台避免撞到探頭
4、掃描電鏡(SEM)測試是怎麼收費的
掃描電鏡(SEM)測試各地不一樣的,最少的也要幾百塊啊
5、電子掃描顯微鏡(SEM)的工作原理???
掃描電鏡是用聚焦電子束在試樣表面逐點掃描成像。試樣為塊狀或粉末顆 粒,成像信號可以是二次電子、背散射電子或吸收電子。其中二次電子是最主要的成像信號。由電子槍發射的能量為 5 ~ 35keV 的電子,以其交 叉斑作為電子源,經二級聚光鏡及物鏡的縮小形成具有一定能量、一定束流強度和束斑直徑的微細電子束,在掃描線圈驅動下,於試樣表面按一定時間、空間順 序作柵網式掃描。聚焦電子束與試樣相互作用,產生二次電子發射(以及其它物理信號),二次電子發射量隨試樣表面形貌而變化。二次電子信號被探測器收集 轉換成電訊號,經視頻放大後輸入到顯像管柵極,調制與入射電子束同步掃描的顯像管亮度,得到反映試樣表面形貌的二次電子像。
示意圖:
http://www.science.globalsino.com/1/images/1science9682.jpg
6、哪位大神可以清楚的告訴我SEM,EDS,XRD的區別以及各自的應用
SEM,EDS,XRD的區別,SEM是掃描電鏡,EDS是掃描電鏡上配搭的一個用於微區分析成分的配件——能譜儀。能譜儀(EDS,Energy Dispersive Spectrometer)是用來對材料微區成分元素種類與含量分析,配合掃描電子顯微鏡與透射電子顯微鏡的使用。XRD是X射線衍射儀,是用於物相分析的檢測設備。
掃描電子顯微鏡(scanning electron microscope,SEM,圖2-17、18、19)於20世紀60年 代問世,用來觀察標本的表面結構。其工作原理是用一束極細的電子束掃描樣品,在樣品表面激發出次級電子,次級電子的多少與電子束入射角有關,也就是說與樣 品的表面結構有關,次級電子由探測體收集,並在那裡被閃爍器轉變為光信號,再經光電倍增管和放大器轉變為電信號來控制熒光屏上電子束的強度,顯示出與電子 束同步的掃描圖像。圖像為立體形象,反映了標本的表面結構。為了使標本表面發射出次級電子,標本在固定、脫水後,要噴塗上一層重金屬微粒,重金屬在電子束 的轟擊下發出次級電子信號。 目前掃描電鏡的分辨力為6~10nm,人眼能夠區別熒光屏上兩個相距0.2mm的光點,則掃描電鏡的最大有效放大倍率為0.2mm/10nm=20000X。
EDS的原理是各種元素具有自己的X射線特徵波長,特徵波長的大小則取決於能級躍遷過程中釋放出的特徵能量△E,能譜儀就是利用不同元素X射線光子特徵能量不同這一特點來進行成分分析的。使用范圍:
1、高分子、陶瓷、混凝土、生物、礦物、纖維等無機或有機固體材料分析;
2、金屬材料的相分析、成分分析和夾雜物形態成分的鑒定;
3、可對固體材料的表面塗層、鍍層進行分析,如:金屬化膜表面鍍層的檢測;
4、金銀飾品、寶石首飾的鑒別,考古和文物鑒定,以及刑偵鑒定等領域;
5、進行材料表面微區成分的定性和定量分析,在材料表面做元素的面、線、點分布分析。
X射線衍射儀是利用衍射原理,精確測定物質的晶體結構,織構及應力,精確的進行物相分析,定性分析,定量分析。廣泛應用於冶金、石油、化工、科研、航空航天、教學、材料生產等領域。