1、掃描電鏡SEM和透射電鏡TEM的區別
掃描電鏡,是觀察樣品表面的結構特徵;
透射電鏡,是觀察樣品的內部精細結構。
2、比較透射電鏡和掃描電鏡在結構、工作原理、樣品制備等方面的異同
1、結構差異:主要體現在樣品在電子束光路中的位置不同。透射電鏡的樣品在電子束中間,電子源在樣品上方發射電子,經過聚光鏡,然後穿透樣品後,有後續的電磁透鏡繼續放大電子光束,最後投影在熒光屏幕上;掃描電鏡的樣品在電子束末端,電子源在樣品上方發射的電子束,經過幾級電磁透鏡縮小,到達樣品。當然後續的信號探測處理系統的結構也會不同,但從基本物理原理上講沒什麼實質性差別。
相同之處:都是電真空設備,使用絕大部分部件原理相同,例如電子槍,磁透鏡,各種控制原理,消象散,合軸等等。
2、基本工作原理:
透射電鏡:電子束在穿過樣品時,會和樣品中的原子發生散射,樣品上某一點同時穿過的電子方向是不同,這樣品上的這一點在物鏡1-2倍焦距之間,這些電子通過過物鏡放大後重新匯聚,形成該點一個放大的實像,這個和凸透鏡成像原理相同。這里邊有個反差形成機制理論比較深就不講,但可以這么想像,如果樣品內部是絕對均勻的物質,沒有晶界,沒有原子晶格結構,那麼放大的圖像也不會有任何反差,事實上這種物質不存在,所以才會有這種牛逼儀器存在的理由。經過物鏡放大的像進一步經過幾級中間磁透鏡的放大(具體需要幾級基本上是由電子束亮度決定的,如果亮度無限大,最終由阿貝瑞利的光學儀器解析度公式決定),最後投影在熒光屏上成像。由於透射電鏡物鏡焦距很短,也因此具有很小的像差系數,所以透射電鏡具有非常高的空間解析度,0.1-0.2nm,但景深比較小,對樣品表面形貌不敏感,主要觀察樣品內部結構。
掃描電鏡:電子束到達樣品,激發樣品中的二次電子,二次電子被探測器接收,通過信號處理並調制顯示器上一個像素發光,由於電子束斑直徑是納米級別,而顯示器的像素是100微米以上,這個100微米以上像素所發出的光,就代表樣品上被電子束激發的區域所發出的光。實現樣品上這個物點的放大。如果讓電子束在樣品的一定區域做光柵掃描,並且從幾何排列上一一對應調制顯示器的像素的亮度,便實現這個樣品區域的放大成像。具體圖像反差形成機制不講。由於掃描電鏡所觀察的樣品表面很粗糙,一般要求較大工作距離,這就要求掃描電鏡物鏡的焦距比較長,相應的相差系數較大,造成最小束斑尺寸下的亮度限制,系統的空間解析度一般比透射電鏡低得多1-3納米。但因為物鏡焦距較長,圖像景深比透射電鏡高的多,主要用於樣品表面形貌的觀察,無法從表面揭示內部結構,除非破壞樣品,例如聚焦離子束電子束掃描電鏡FIB-SEM,可以層層觀察內部結構。
透射電鏡和掃描電鏡二者成像原理上根本不同。透射電鏡成像轟擊在熒光屏上的電子是那些穿過樣品的電子束中的電子,而掃描電鏡成像的二次電子信號脈沖只作為傳統CTR顯示器上調制CRT三極電子槍柵極的信號而已。透射電鏡我們可以說是看到了電子光成像,而掃描電鏡根本無法用電子光路成像來想像。
3、樣品制備:
TEM:電子的穿透能力很弱,透射電鏡往往使用幾百千伏的高能量電子束,但依然需要把樣品磨製或者離子減薄或者超薄切片到微納米量級厚度,這是最基本要求。透射制樣是學問,制樣好壞很多情況要靠運氣,北京大學物理學院電子顯微鏡實驗室,制樣室都貼著制樣過程規范,結語是祝你好運!
SEM: 幾乎不用制樣,直接觀察。大多數非導體需要製作導電膜,絕大多數幾分鍾的搞定, 含水的生物樣品需要固定脫水乾燥,又要求不變形,比較麻煩,自然乾燥還要曬幾天吧。
二者對樣品共同要求:固體,盡量乾燥,盡量沒有油污染,外形尺寸符合樣品室大小要求。
3、掃描電鏡與透射電鏡相比有哪些特點
掃描電復鏡是用極制細的電子束在樣品表面掃描,將產生的二次電子用特製的探測器收集,形成電信號運送到顯像管,在熒光屏上顯示物體.(細胞、組織)表面的立體構像,可攝製成照片.
掃描電鏡樣品用戊二醛和餓酸等固定,經脫水和臨界點乾燥後,再於樣品表面噴鍍薄層金膜,以增加二波電子數.掃描電鏡能觀察較大的組織表面結構,由於它的景深長,1mm左右的凹凸不平面能清所成像,故放樣品圖像富有立體感.
透射電子顯微鏡結構包括兩大部分:主體部分為照明系統、成像系統和觀察照相室;輔助部分為真空系統和電氣系統.
4、掃描電鏡和透射電鏡哪個好,各有什麼特點,哪個貴啊?
掃描電鏡是用極細的電子束在樣品表面掃描,將產生的二次電子用特製內的探測器收集,形成電信容號運送到顯像管,在熒光屏上顯示物體。(細胞、組織)表面的立體構像,可攝製成照片。
掃描電鏡樣品用戊二醛和餓酸等固定,經脫水和臨界點乾燥後,再於樣品表面噴鍍薄層金膜,以增加二波電子數。掃描電鏡能觀察較大的組織表面結構,由於它的景深長,1mm左右的凹凸不平面能清所成像,故放樣品圖像富有立體感。
透射電子顯微鏡結構包括兩大部分:主體部分為照明系統、成像系統和觀察照相室;輔助部分為真空系統和電氣系統。
5、在觀察材料結構時,掃描電鏡與透射電鏡的區別是什麼
通俗的說
掃描電鏡是相當與對物體的照相 得到的是表面的 只是表面的 立體回三維的圖象
因為掃描的答原理是「感知」那些物提被電子束攻擊後發出的此級電子
而透射電竟就相當於普通顯微鏡 只是用波長更短的電子束替代了會發生衍射的可見光 從而實現了顯微 是二維的圖象 會看到表面的圖象的同時也看到內層物質 就想我們拍的X光片似的 內臟骨骼什麼的都重疊著顯現出來
總結就是透射雖然能看見內部但是不立體
掃描立體但是不能看見內部 只局限與表面
6、掃描電鏡與透射電鏡的區別?
1、結構差異:
主要體現在樣品在電子束光路中的位置不同。透射電鏡的樣品在電子束中間,電子源在樣品上方發射電子,經過聚光鏡,然後穿透樣品後,有後續的電磁透鏡繼續放大電子光束,最後投影在熒光屏幕上;掃描電鏡的樣品在電子束末端,電子源在樣品上方發射的電子束,經過幾級電磁透鏡縮小,到達樣品。當然後續的信號探側處理系統的結構也會不同,但從基本物理原理上講沒什麼實質性差別。
2、基本工作原理:
透射電鏡:電子束在穿過樣品時,會和樣品中的原子發生散射,樣品上某一點同時穿過的電子方向是不同,這樣品上的這一點在物鏡1-2倍焦距之間,這些電子通過過物鏡放大後重新匯聚,形成該點一個放大的實像,這個和凸透鏡成像原理相同。這里邊有個反差形成機制理論比較深就不講,但可以這么想像,如果樣品內部是絕對均勻的物質,沒有晶界,沒有原子晶格結構,那麼放大的圖像也不會有任何反差,事實上這種物質不存在,所以才會有這種儀器存在的理由。
掃描電鏡:電子束到達樣品,激發樣品中的二次電子,二次電子被探測器接收,通過信號處理並調制顯示器上一個像素發光,由於電子束斑直徑是納米級別,而顯示器的像素是100微米以上,這個100微米以上像素所發出的光,就代表樣品上被電子束激發的區域所發出的光。實現樣品上這個物點的放大。如果讓電子束在樣品的一定區域做光柵掃描,並且從幾何排列上一一對應調制顯示器的像素的亮度,便實現這個樣品區域的放大成像。
3、對樣品要求
(1)掃描電鏡
SEM制樣對樣品的厚度沒有特殊要求,可以採用切、磨、拋光或解理等方法將特定剖面呈現出來,從而轉化為可以觀察的表面。這樣的表面如果直接觀察,看到的只有表面加工損傷,一般要利用不同的化學溶液進行擇優腐蝕,才能產生有利於觀察的襯度。不過腐蝕會使樣品失去原結構的部分真實情況,同時引入部分人為的干擾,對樣品中厚度極小的薄層來說,造成的誤差更大。
(2)透射電鏡
由於TEM得到的顯微圖像的質量強烈依賴於樣品的厚度,因此樣品觀測部位要非常的薄,例如存儲器器件的TEM樣品一般只能有10~100nm的厚度,這給TEM制樣帶來很大的難度。初學者在制樣過程中用手工或者機械控制磨製的成品率不高,一旦過度削磨則使該樣品報廢。TEM制樣的另一個問題是觀測點的定位,一般的制樣只能獲得10mm量級的薄的觀測范圍,這在需要精確定位分析的時候,目標往往落在觀測范圍之外。目前比較理想的解決方法是通過聚焦離子束刻蝕(FIB)來進行精細加工。
透射電子顯微鏡的成像原理 可分為三種情況:
(1)吸收像:當電子射到質量、密度大的樣品時,主要的成相作用是散射作用。樣品上質量厚度大的地方對電子的散射角大,通過的電子較少,像的亮度較暗。早期的透射電子顯微鏡都是基於這種原理。
(2)衍射像:電子束被樣品衍射後,樣品不同位置的衍射波振幅分布對應於樣品中晶體各部分不同的衍射能力,當出現晶體缺陷時,缺陷部分的衍射能力與完整區域不同,從而使衍射波的振幅分布不均勻,反映出晶體缺陷的分布。
(3)相位像:當樣品薄至100Å以下時,電子可以穿過樣品,波的振幅變化可以忽略,成像來自於相位的變化。
7、掃描電鏡和透射電鏡的EDS對分析樣品的成分有什麼不同?
SEM TEM 都是主要用來分析形貌。他兩相比較TEM的解析度要高於SEM。TEM給出的是一個平面圖,可以告訴你樣品的形貌特這,尤其是孔材料用TEM分析最好。SEM是分析表面形貌結構的,給出的是立體圖,對觀察棒狀,球狀,等等材料材料有很好的視覺效果。EDS是分析成分的,一般是配套於TEM儀器上。它分析的是樣品表面面某個小的部分的元素組成,不能代表樣品整體組成。
8、透射電鏡和掃描電鏡的特點及應用(越全越好)
1、透射電子顯微鏡電子束的波長要比可見光和紫外光短得多,並且電子束的波長與發射電子束的電壓平方根成反比,也就是說電壓越高波長越短。
透射電子顯微鏡在材料科學、生物學上應用較多。由於電子易散射或被物體吸收,故穿透力低,樣品的密度、厚度等都會影響到最後的成像質量,必須制備更薄的超薄切片,通常為50~100nm。所以用透射電子顯微鏡觀察時的樣品需要處理得很薄。
常用的方法有:超薄切片法、冷凍超薄切片法、冷凍蝕刻法、冷凍斷裂法等。對於液體樣品,通常是掛預處理過的銅網上進行觀察。
2、掃描電鏡的特點:有較高的放大倍數,2-20萬倍之間連續可調;有很大的景深,視野大,成像富有立體感,可直接觀察各種試樣凹凸不平表面的細微結構;試樣制備簡單。
生物:種子、花粉、細菌;
醫學:血球、病毒;
動物:大腸、絨毛、細胞、纖維;
材料:陶瓷、高分子、粉末、金屬、金屬夾雜物、環氧樹脂;
化學、物理、地質、冶金、礦物、污泥(桿菌)、機械、電機及導電性樣品,如半導體(IC、線寬量測、斷面、結構觀察)電子材料等。
(8)sem掃描電鏡與透射擴展資料
透射電鏡的總體工作原理是:由電子槍發射出來的電子束,在真空通道中沿著鏡體光軸穿越聚光鏡,通過聚光鏡將之會聚成一束尖細、明亮而又均勻的光斑,照射在樣品室內的樣品上;透過樣品後的電子束攜帶有樣品內部的結構信息,樣品內緻密處透過的電子量少,稀疏處透過的電子量多;
經過物鏡的會聚調焦和初級放大後,電子束進入下級的中間透鏡和第1、第2投影鏡進行綜合放大成像,最終被放大了的電子影像投射在觀察室內的熒光屏板上;熒光屏將電子影像轉化為可見光影像以供使用者觀察。
掃描電子顯微鏡的製造依據是電子與物質的相互作用。掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接收、放大和顯示成像,獲得測試試樣表面形貌的觀察。