導航:首頁 > 網路營銷 > sem中激發深度

sem中激發深度

發布時間:2020-11-06 09:41:57

1、掃描電鏡

掃描電子顯微鏡(SEM)是1965年以後才迅速發展起來的新型電子儀器。其主要特點可歸納為:①儀器解析度高;②儀器的放大倍數范圍大,一般可達15~180000倍,並在此范圍內連續可調;③圖像景深大,富有立體感;④樣品制備簡單,可不破壞樣品;⑤在SEM上裝上必要的專用附件——能譜儀(EDX),以實現一機多用,在觀察形貌像的同時,還可對樣品的微區進行成分分析。

一、掃描電子顯微鏡(SEM)的基本結構及原理

掃描電鏡基本上是由電子光學系統、信號接收處理顯示系統、供電系統、真空系統等四部分組成。圖13-2-1是它的前兩部分結構原理方框圖。電子光學部分只有起聚焦作用的匯聚透鏡,它們的作用是用信號收受處理顯示系統來完成的。

圖13-2-1 SEM的基本結構示意圖

在掃描電鏡中,電子槍發射出來的電子束,經3個電磁透鏡聚焦,成直徑為20 μm~25 Å的電子束。置於末級透鏡上部的掃描線圈能使電子束在試樣表面上做光柵狀掃描。試樣在電子束作用下,激發出各種信號,信號的強度取決於試樣表面的形貌、受激區域的成分和晶體取向。試樣附近的探測器把激發出的電子信號接受下來,經信號處理放大系統後,輸送到陰極射線管(顯像管)的柵極以調制顯像管的亮度。由於顯像管中的電子束和鏡筒中的電子束是同步掃描的,顯像管亮度是由試樣激發出的電子信號強度來調制的,由試樣表面任一點所收集來的信號強度與顯像管屏上相應點亮度一一對應,因此試樣狀態不同,相應的亮度也必然不同。由此,得到的像一定是試樣形貌的反映。若在試樣斜上方安置的波譜儀和能譜儀,收集特徵X射線的波長和能量,則可做成分分析。

值得注意的是,入射電子束在試樣表面上是逐點掃描的,像是逐點記錄的,因此試樣各點所激發出來的各種信號都可選錄出來,並可同時在相鄰的幾個顯像管上或X—Y記錄儀上顯示出來,這給試樣綜合分析帶來極大的方便。

二、高能電子束與樣品的相互作用

並從樣品中激發出各種信息。對於寶石工作者,最常用的是二次電子、背散射電子和特徵X射線。上述信息產生的機理各異,採用不同的檢測器,選擇性地接收某一信息就能對樣品進行成分分析(特徵X射線)或形貌觀察(二次電子和背散射電子)。這些信息主要有以下的特徵:

1.二次電子(SE)

從距樣品表面100 Å左右的深度范圍內激發的低能量電子(一般為0~50 eV左右)發生非彈性碰撞。二次電子像是SEM中應用最廣、解析度最高的一種圖像,成像原理亦有一定的代表性。高能入射電子束(一般為10~35 keV)由掃描線圈磁場的控制,在樣品表面上按一定的時間、空間順序作光柵式掃描,而從試樣中激發出二次電子。被激發出的二次電子經二次電子收集極、閃爍體、光導管、光電倍增管以及視頻放大器,放大成足夠強的電信號,用以調制顯像管的亮度。由於入射電子束在樣品上的掃描和顯像管的電子束在熒光屏上的掃描用同一個掃描發生器調制,這就保證了樣品上任一物點與熒光屏上任一「像點」在時間與空間上一一對應;同時,二次電子激發量隨試樣表面凹凸程度的變化而變化,所以,顯像管熒光屏上顯現的是一幅明暗程度不同的反映樣品表面形貌的二次電子像。由於二次電子具有低的能量,為了收集到足夠強的信息,二次電子檢測器的收集必須處於正電位(一般為+250 V ),在這個正電位的作用下,試樣表面向各個方向發射的二次電子都被拉向收集極(圖13-2-2a),這就使二次電子像成為無影像,觀察起來更真實、更直觀、更有立體感。

2.背散射電子(BE)

從距樣品表面0.1~1 μm的深度范圍內散射回來的入射電子,其能量近似等於原入射電子的能量發生彈性碰撞。背散射電子像的成像過程幾乎與二次電子像相同,只不過是採用不同的探測器接收不同的信息而已,如圖13-2-2所示。

圖13-2-2 二次電子圖像和背散射電子圖像的照明效果

(據S.Kimoto,1972)

a:二次電子檢測方法;a′:二次電子圖像的照明效果;b:背散射電子檢測方法;b′:背散射電子圖像的照明效果

3.特徵X射線

樣品中被激發了的元素特徵X射線釋放出來(發射深度在0.5~5μm范圍內)。而要對樣品進行微區的元素的成分分析,則需藉助於被激發的特徵X射線。這就是通常所謂的「電子探針分析」,又通常把測定特徵X射線波長的方法叫波長色散法(WDS);測定特徵X射線能量的方法叫能量色散法(EDS)。掃描電子顯微鏡除了可運用於寶玉石的表面形貌外,它經常帶能譜(EDS)做成分分析。EDS主要是由高效率的鋰漂移硅半導體探測器、放大器、多道脈沖高度分析器和記錄系統組成。樣品被激發的特徵X射線,入射至鋰漂移硅半導體探測器中,使之產生電子—空穴對,然後轉換成電流脈沖,放大,經多道脈沖高度分析器按能量高低將這些脈沖分離,由這些脈沖所處的能量位置,可知試樣所含的元素的種類,由具有相應能量的脈沖數量可知該元素的相對含量。利用此方法很容易確定寶石礦物的成分。

掃描電鏡若帶有能譜(EDS)則不但可以不破壞樣品可運用於做寶玉石形貌像,而且還能快速做成分分析(如圖13-2-3,廖尚儀,2001)。因此它是鑒定和區別相似寶玉石礦物的好方法,如紅色的鎂鋁榴石,紅寶石、紅尖晶石、紅碧璽等,因為它們的成分不同,其能譜(EDS)圖也就有較大的區別。波譜(WDS)定量分析比能譜(EDS)定量分析精確,但EDS分析速度快。

圖13-2-3 藍色鉀-鈉閃石的能譜圖

三、SEM的微形貌觀察

1.樣品制備

如果選用粉狀樣,需要事先選擇好試樣台。如果是塊狀樣,最大直徑一般不超過15mm。如果單為觀察形貌像,直徑稍大一些(39mm)仍可以使用,但試樣必須導電。如果是非導電體試樣,必須在試樣表面覆蓋一層約200 Å厚度的碳或150 Å的金。

2.SEM形貌像的獲得

圖13-2-4 掃描電子顯微鏡下石英(a)和藍色閃石玉(b)的二次電子像

觀察試樣的形貌,常用二次電子像或背散射電子像。圖13-2-4是石英(a)和藍色閃石玉(鉀-鈉閃石b)的二次電子像。同時由於二次電子像具有較高的解析度和較高的放大倍數,因此,比背散射電子像更為常用。而成分分析則常採用背散射電子像。

2、sem中鏈接深度越小是什麼意思

網站有很多層級,比如首頁,列表頁,產品頁,鏈接深度依次增加,深度越小就是反之了,有幫助的話記得採納額(⊙o⊙)…

3、掃描電鏡中的WD參數是什麼意思

掃描電鏡中的WD參數是工作距離,樣品成像表面到物鏡的距離。

介於透射電鏡和光學顯微鏡之間的一種微觀形貌觀察手段,可直接利用樣品表面材料的物質性能進行微觀成像。

掃描電鏡的優點是:

①有較高的放大倍數,2-20萬倍之間連續可調;

②有很大的景深,視野大,成像富有立體感,可直接觀察各種試樣凹凸不平表面的細微結構;

③試樣制備簡單。 目前的掃描電鏡都配有X射線能譜儀裝置,這樣可以同時進行顯微組織形貌的觀察和微區成分分析,因此它是當今十分有用的科學研究儀器。

(3)sem中激發深度擴展資料

掃描電子顯微鏡的製造依據是電子與物質的相互作用。

掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接受、放大和顯示成像,獲得測試試樣表面形貌的觀察。

當一束極細的高能入射電子轟擊掃描樣品表面時,被激發的區域將產生二次電子、俄歇電子、特徵x射線和連續譜X射線、背散射電子、透射電子,以及在可見、紫外、紅外光區域產生的電磁輻射。同時可產生電子-空穴對、晶格振動(聲子)、電子振盪(等離子體)。

從數量上看,彈性背反射電子遠比非彈性背反射電子所佔的份額多。 背反射電子的產生范圍在100nm-1mm深度。

背反射電子產額和二次電子產額與原子序數的關系背反射電子束成像解析度一般為50-200nm(與電子束斑直徑相當)。背反射電子的產額隨原子序數的增加而增加,所以,利用背反射電子作為成像信號不僅能分析形貌特徵,也可以用來顯示原子序數襯度,定性進行成分分析。

4、SEM掃描電鏡圖怎麼看,圖上各參數都代表什麼意思

1、放大率:

與普通光學顯微鏡不同,在SEM中,是通過控制掃描區域的大小來控制放大率的。如果需要更高的放大率,只需要掃描更小的一塊面積就可以了。放大率由屏幕/照片面積除以掃描面積得到。

所以,SEM中,透鏡與放大率無關。

2、場深:

在SEM中,位於焦平面上下的一小層區域內的樣品點都可以得到良好的會焦而成象。這一小層的厚度稱為場深,通常為幾納米厚,所以,SEM可以用於納米級樣品的三維成像。

3、作用體積:

電子束不僅僅與樣品表層原子發生作用,它實際上與一定厚度范圍內的樣品原子發生作用,所以存在一個作用「體積」。

4、工作距離:

工作距離指從物鏡到樣品最高點的垂直距離。

如果增加工作距離,可以在其他條件不變的情況下獲得更大的場深。如果減少工作距離,則可以在其他條件不變的情況下獲得更高的解析度。通常使用的工作距離在5毫米到10毫米之間。

5、成象:

次級電子和背散射電子可以用於成象,但後者不如前者,所以通常使用次級電子。

6、表面分析:

歐革電子、特徵X射線、背散射電子的產生過程均與樣品原子性質有關,所以可以用於成分分析。但由於電子束只能穿透樣品表面很淺的一層(參見作用體積),所以只能用於表面分析。

表面分析以特徵X射線分析最常用,所用到的探測器有兩種:能譜分析儀與波譜分析儀。前者速度快但精度不高,後者非常精確,可以檢測到「痕跡元素」的存在但耗時太長。

觀察方法:

如果圖像是規則的(具螺旋對稱的活體高分子物質或結晶),則將電鏡像放在光衍射計上可容易地觀察圖像的平行周期性。

尤其用光過濾法,即只留衍射像上有周期性的衍射斑,將其他部分遮蔽使重新衍射,則會得到背景干擾少的鮮明圖像。

(4)sem中激發深度擴展資料:

SEM掃描電鏡圖的分析方法:

從干擾嚴重的電鏡照片中找出真實圖像的方法。在電鏡照片中,有時因為背景干擾嚴重,只用肉眼觀察不能判斷出目的物的圖像。

圖像與其衍射像之間存在著數學的傅立葉變換關系,所以將電鏡像用光度計掃描,使各點的濃淡數值化,將之進行傅立葉變換,便可求出衍射像〔衍射斑的強度(振幅的2乘)和其相位〕。

將其相位與從電子衍射或X射線衍射強度所得的振幅組合起來進行傅立葉變換,則會得到更鮮明的圖像。此法對屬於活體膜之一的紫膜等一些由二維結晶所成的材料特別適用。

掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接受、放大和顯示成像,獲得測試試樣表面形貌的觀察。

5、如何對sem競價數據進行深層次的剖析

對於百度競價來說,網站主要存在著這三種現象:
高展現高點擊
高展現低點擊
低展現高點擊
其一,高展現高點擊。這自然是最理想的情況,說明我們的創意較為優質,有營銷力,能夠吸引用戶,並且排名穩定。但這並不代表我們就沒有優化的空間,我們可以在保持這種現狀的前提下,去優化用戶對於網站的體驗度,以及客服的話術,在一定程度上加大網站的轉化率。
其二,高展現低點擊。這種情況代表我們關鍵詞的出價和排名都沒有問題,但是創意卻不夠吸引消費者,或者沒有滿足消費者的需求。這就需要我們對網站目標人群進行更深層次剖析,根據訪客的需求點去優化創意。
其三,低展現高點擊。出現這種情況的原因一般是缺乏展現但是創意足夠吸引人。而此時,我們要做的是分析賬戶情況,查看關鍵詞沒有展現的原因。然後根據原因來優化賬戶,例如提價或者增加關鍵詞和創意的相關性來提升質量度,爭取實現高展現穩點擊。
如果說前兩項都沒有什麼問題的話,那我們就需要考慮網站的相關轉化情況。作為一個網站,最終的目的都是為了形成轉化,增加利潤。那麼首先我們就需要清楚消費者對於網站的轉化主要集中在哪幾點?
(1)落地頁。根據消費者行為習慣來說,關鍵詞的創意固然重要,但落地頁也是不可忽略的。比如:你的關鍵詞寫著「廣州愛搜客價格明細表」,用戶點開一看卻發現是一個公司介紹,這往往就是明顯的題文不符,消費者會有一種被欺騙的感覺從而關掉網頁。這就需要我們在注重頁面美觀的同時,也要注重迎合用戶的需求點,即增加頁面和關鍵詞的相關性。
(2)客服話術。在銷售戰場中,一個好的開場白是成功的一半。當用戶看到我們的網站並對產品進行咨詢時,這時就需要我們的客服去進行一個良好的引導,激發用戶的購買慾望。因此我們需要根據用戶的痛點去進行話術優化,爭取避免用戶在咨詢過程中的流失。
如何對sem競價數據進行深層次的剖析?
動圖 gif 分割線
總結來說,對於一個sem競價員,他的首要任務就是花最少的廣告費,賺最多的錢。而這就需要我們對用戶,對百度搜索,對數據有一個透徹的了解,同時在對競價賬戶進行優化的情況下,也要注意用戶的體驗性,這樣才有助於競價賬戶的長期發展。

6、激發深度是什麼意思,還有底下幾個圖說明表達式的物理意義。。搞地質的朋友能幫下忙不

你的問題是不是過期了~

7、SEM、TEM、XRD、AES、STM、AFM的區別

SEM、TEM、XRD、AES、STM、AFM的區別主要是名稱不同、工作原理不同、作用不同、

一、名稱不同

1、SEM,英文全稱:Scanningelectronmicroscope,中文稱:掃描電子顯微鏡。

2、TEM,英文全稱:,中文稱:透射電子顯微鏡。

3、XRD,英文全稱:Diffractionofx-rays,中文稱:X射線衍射。

4、AES,英文全稱:AugerElectronSpectroscopy,中文稱:俄歇電子能譜。

5、STM,英文全稱:ScanningTunnelingMicroscope,中文稱:掃描隧道顯微鏡。

6、AFM,英文全稱:AtomicForceMicroscope,中文稱:原子力顯微鏡。

二、工作原理不同

1.掃描電子顯微鏡的原理是用高能電子束對樣品進行掃描,產生各種各樣的物理信息。通過接收、放大和顯示這些信息,可以觀察到試樣的表面形貌。

2.透射電子顯微鏡的整體工作原理如下:電子槍發出的電子束經過冷凝器在透鏡的光軸在真空通道,通過冷凝器,它將收斂到一個薄,明亮而均勻的光斑,輻照樣品室的樣品。通過樣品的電子束攜帶著樣品內部的結構信息。通過樣品緻密部分的電子數量較少,而通過稀疏部分的電子數量較多。

物鏡會聚焦點和一次放大後,電子束進入第二中間透鏡和第一、第二投影透鏡進行綜合放大成像。最後,將放大後的電子圖像投影到觀察室的熒光屏上。屏幕將電子圖像轉換成可視圖像供用戶觀察。

3、x射線衍射(XRD)的基本原理:當一束單色X射線入射晶體,因為水晶是由原子規則排列成一個細胞,規則的原子之間的距離和入射X射線波長具有相同的數量級,因此通過不同的原子散射X射線相互干涉,更影響一些特殊方向的X射線衍射,衍射線的位置和強度的空間分布,晶體結構密切相關。

4.入射的電子束和材料的作用可以激發原子內部的電子形成空穴。從填充孔到內殼層的轉變所釋放的能量可能以x射線的形式釋放出來,產生特徵性的x射線,也可能激發原子核外的另一個電子成為自由電子,即俄歇電子。

5.掃描隧道顯微鏡的工作原理非常簡單。一個小電荷被放在探頭上,電流從探頭流出,穿過材料,到達下表面。當探針通過單個原子時,通過探針的電流發生變化,這些變化被記錄下來。

電流在流經一個原子時漲落,從而非常詳細地描繪出它的輪廓。經過多次流動後,人們可以通過繪制電流的波動得到構成網格的單個原子的美麗圖畫。

6.原子力顯微鏡的工作原理:當原子間的距離減小到一定程度時,原子間作用力迅速增大。因此,樣品表面的高度可以直接由微探針的力轉換而來,從而獲得樣品表面形貌的信息。

三、不同的功能

1.掃描電子顯微鏡(SEM)是介於透射電子顯微鏡和光學顯微鏡之間的一種微觀形貌觀察方法,可以直接利用樣品表面材料的材料性質進行微觀成像。

掃描電子顯微鏡具有高倍放大功能,可連續調節20000~200000倍。它有一個大的景深,一個大的視野,一個立體的形象,它可以直接觀察到各種樣品在不均勻表面上的細微結構。

樣品制備很簡單。目前,所有的掃描電鏡設備都配備了x射線能譜儀,可以同時觀察微觀組織和形貌,分析微區成分。因此,它是當今非常有用的科學研究工具。

2.透射電子顯微鏡在材料科學和生物學中有著廣泛的應用。由於電子容易散射或被物體吸收,穿透率低,樣品的密度和厚度會影響最終成像質量。必須制備超薄的薄片,通常為50~100nm。

所以當你用透射電子顯微鏡觀察樣品時,你必須把它處理得很薄。常用的方法有:超薄切片法、冷凍超薄切片法、冷凍蝕刻法、冷凍斷裂法等。對於液體樣品,通常掛在預處理過的銅線上觀察。

3X射線衍射檢測的重要手段的人們意識到自然,探索自然,尤其是在凝聚態物理、材料科學、生活、醫療、化工、地質、礦物學、環境科學、考古學、歷史、和許多其他領域發揮了積極作用,不斷拓展新領域、新方法層出不窮。

特別是隨著同步輻射源和自由電子激光的興起,x射線衍射的研究方法還在不斷擴展,如超高速x射線衍射、軟x射線顯微術、x射線吸收結構、共振非彈性x射線衍射、同步x射線層析顯微術等。這些新的X射線衍射檢測技術必將為各個學科注入新的活力。

4,俄歇電子在固體也經歷了頻繁的非彈性散射,可以逃避只是表面的固體表面原子層的俄歇電子,電子的能量通常是10~500電子伏特,他們的平均自由程很短,約5~20,所以俄歇電子能譜學調查是固體表面。

俄歇電子能譜通常採用電子束作為輻射源,可以進行聚焦和掃描。因此,俄歇電子能譜可用於表面微觀分析,並可直接從屏幕上獲得俄歇元素圖像。它是現代固體表面研究的有力工具,廣泛應用於各種材料的分析,催化、吸附、腐蝕、磨損等方面的研究。

5.當STM工作時,探頭將足夠接近樣品,以產生具有高度和空間限制的電子束。因此,STM具有很高的空間解析度,可以用於成像工作中的科學觀測。

STM在加工的過程中進行了表面上可以實時成像進行了表面形態,用於查找各種結構性缺陷和表面損傷,表面沉積和蝕刻方法建立或切斷電線,如消除缺陷,達到修復的目的,也可以用STM圖像檢查結果是好還是壞。

6.原子力顯微鏡的出現無疑促進了納米技術的發展。掃描探針顯微鏡,以原子力顯微鏡為代表,是一系列的顯微鏡,使用一個小探針來掃描樣品的表面,以提供高倍放大。Afm掃描可以提供各類樣品的表面狀態信息。

與傳統顯微鏡相比,原子力顯微鏡觀察樣品的表面的優勢高倍鏡下在大氣條件下,並且可以用於幾乎所有樣品(與某些表面光潔度要求)並可以獲得樣品表面的三維形貌圖像沒有任何其他的樣品制備。

掃描後的三維形貌圖像可進行粗糙度計算、厚度、步長、方框圖或粒度分析。

8、sem用於分析顯微成分的附件有幾種

sem用於分析顯微成分的附件有幾種
Q :用SEM中的EDS做元素麵掃描,其反映的是多少深度的信息?RE:分析深度取決於樣品本性和選用的參數,不同的加速電壓,穿透深度不一樣,電壓越高,X射線激發深度越深 ,通常5KV一個單位入射深度2-3個mirc. 電壓強度越高入射深度越強. 輕元素比較深,重元素相對較淺。具體書上有公式計算。和加速電壓,元素的吸收系數等有關系。一般在幾微米左右,重元素可能在幾百納米。

9、能譜掃描成分的深度是多少?

Q :用SEM中的EDS做元素麵掃描,其反映的是多少深度的信息?RE:分析深度取決於樣品本性和選用的參數,不同的加速電壓,穿透深度不一樣,電壓越高,X射線激發深度越深 ,通常5KV一個單位入射深度2-3個mirc. 電壓強度越高入射深度越強. 輕元素比較深,重元素相對較淺。具體書上有公式計算。和加速電壓,元素的吸收系數等有關系。一般在幾微米左右,重元素可能在幾百納米。

與sem中激發深度相關的知識