1、掃描電鏡與透射電鏡檢測方法各有什麼用途?
掃描電鏡的電子束不穿過樣品,僅在樣品表面掃描激發出二次電子。獲得圖像為立體形象,反映標本的表面結構。因此掃描電鏡標本無需製成薄片。
透射電鏡的電子束通過樣品後由物鏡成像於中間鏡上,再通過中間鏡和投影鏡逐級放大,成像於熒光屏或照相干版上,分辨的細微物質結構;因此能在看到表面的圖象的同時也看到內層物質。標本必須製成超薄切片(50~100nm)。
簡而言之,掃描電鏡觀察的是樣品表面的形態,而透射電鏡是觀察樣品結構形態的。兩者大體上結構一樣,只是程序原理上不盡相同。一般情況下,透射電鏡放大倍數更大,真空要求也更高。
2、哪裡可以做掃描電鏡截面測試?最好是北京的!
北京科做掃描電鏡截面測試的很多,但是如果度時間要求比較高,不想等排期的話,最好來人人實驗。不僅可以幫助您節省排期時間而且還對測試結果負責,測的不好免費重新測。
如果覺得不錯,記得採納哦
3、掃描電鏡SEM/EDX測試的井深是多少?
````
應該是景深吧``
焦深計算公式
L= ±[(r/M)-d]/2α 其中:
L: 焦深
r: 顯像管最小分辨距離
M:放大倍數
d:入射電子束直徑
2α:物鏡孔徑角。
從上面的式子可以看出影響焦深的因素,其中隱含了工作距離w。物鏡孔徑角與工作距離和入射電子束直徑有關。由於r(顯像管的解析度)和2α都是未知數,實際上不能計算。焦深也只是個人的視覺感受,還是直觀的測量一下為好。
又查了資料``顯像管最小分辨距離為0.22mm-0.3mm, 孔徑角的典型數值為10-2—10-3rad.利用公式L= ±[(r/M)-d]/2α可以計算出在有效放大倍率下的焦深數據。設d=3納米,孔徑角2α=10-2 rad,r=0.3mm。計算焦深如下:
1000倍下為59.4微米。5000倍下為11.4微米。10000倍下為5.4微米。超過100000倍已經超過了有效放大倍率。不能計算。
4、求助,有沒有人知道怎麼用PS測量電鏡照片中的物體直徑
很簡單的嘛!
如果你知道比例的話,你把電子顯微鏡拍照的圖片用CS打開,點擊「視圖」-「標尺」——前邊打勾!!然後從左邊(或者上邊)框拉過一條參考線放到噬菌斑的左(或者上邊)邊沿,在拉一條參考線放置到噬菌斑的右邊(或者下邊)沿,通過標尺顯示的數據進行計算就出來噬菌斑的直徑了嘛!
5、掃描電鏡(SEM)測試是怎麼收費的
掃描電鏡(SEM)測試各地不一樣的,最少的也要幾百塊啊
6、掃描電鏡拍紙張截面怎麼處理
1)首先將紙張在液氮里浸漬下然後取出快速掰斷(不能用剪刀剪,會破壞截面形貌);
2)然後將紙張斷面朝上,用導電膠粘在電鏡樣品台的側面;
3)噴金後就可以測試了。
註:我們是自己加工了一個樣品台,專門做膜材料截面的,就是一個正方體的小塊,把樣品粘在正方體四周任何一個面都可以,因為不方便粘在上面。
7、SEM掃描電鏡圖怎麼看,圖上各參數都代表什麼意思
1、放大率:
與普通光學顯微鏡不同,在SEM中,是通過控制掃描區域的大小來控制放大率的。如果需要更高的放大率,只需要掃描更小的一塊面積就可以了。放大率由屏幕/照片面積除以掃描面積得到。
所以,SEM中,透鏡與放大率無關。
2、場深:
在SEM中,位於焦平面上下的一小層區域內的樣品點都可以得到良好的會焦而成象。這一小層的厚度稱為場深,通常為幾納米厚,所以,SEM可以用於納米級樣品的三維成像。
3、作用體積:
電子束不僅僅與樣品表層原子發生作用,它實際上與一定厚度范圍內的樣品原子發生作用,所以存在一個作用「體積」。
4、工作距離:
工作距離指從物鏡到樣品最高點的垂直距離。
如果增加工作距離,可以在其他條件不變的情況下獲得更大的場深。如果減少工作距離,則可以在其他條件不變的情況下獲得更高的解析度。通常使用的工作距離在5毫米到10毫米之間。
5、成象:
次級電子和背散射電子可以用於成象,但後者不如前者,所以通常使用次級電子。
6、表面分析:
歐革電子、特徵X射線、背散射電子的產生過程均與樣品原子性質有關,所以可以用於成分分析。但由於電子束只能穿透樣品表面很淺的一層(參見作用體積),所以只能用於表面分析。
表面分析以特徵X射線分析最常用,所用到的探測器有兩種:能譜分析儀與波譜分析儀。前者速度快但精度不高,後者非常精確,可以檢測到「痕跡元素」的存在但耗時太長。
觀察方法:
如果圖像是規則的(具螺旋對稱的活體高分子物質或結晶),則將電鏡像放在光衍射計上可容易地觀察圖像的平行周期性。
尤其用光過濾法,即只留衍射像上有周期性的衍射斑,將其他部分遮蔽使重新衍射,則會得到背景干擾少的鮮明圖像。
(7)SEM電鏡截面測量擴展資料:
SEM掃描電鏡圖的分析方法:
從干擾嚴重的電鏡照片中找出真實圖像的方法。在電鏡照片中,有時因為背景干擾嚴重,只用肉眼觀察不能判斷出目的物的圖像。
圖像與其衍射像之間存在著數學的傅立葉變換關系,所以將電鏡像用光度計掃描,使各點的濃淡數值化,將之進行傅立葉變換,便可求出衍射像〔衍射斑的強度(振幅的2乘)和其相位〕。
將其相位與從電子衍射或X射線衍射強度所得的振幅組合起來進行傅立葉變換,則會得到更鮮明的圖像。此法對屬於活體膜之一的紫膜等一些由二維結晶所成的材料特別適用。
掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接受、放大和顯示成像,獲得測試試樣表面形貌的觀察。
8、掃描電鏡(SEM)能測出晶型嗎
理論上單純用SEM不能測出晶型,測晶型一般用XRD等儀器。掃描電鏡只能觀察形貌,解析度可達亞微米級別。
不過對於特定的樣品,如果具有明確的晶型,藉助SEM形貌有可能分析出晶型(比如一種物質只有區別明顯的兩種晶型,藉助確定的形貌可以推斷是那種晶型)。另外,SEM通過加裝EBSD附件,通過觀察也有可能觀察晶型
9、掃描電鏡與透射電鏡的區別?
1、結構差異:
主要體現在樣品在電子束光路中的位置不同。透射電鏡的樣品在電子束中間,電子源在樣品上方發射電子,經過聚光鏡,然後穿透樣品後,有後續的電磁透鏡繼續放大電子光束,最後投影在熒光屏幕上;掃描電鏡的樣品在電子束末端,電子源在樣品上方發射的電子束,經過幾級電磁透鏡縮小,到達樣品。當然後續的信號探側處理系統的結構也會不同,但從基本物理原理上講沒什麼實質性差別。
2、基本工作原理:
透射電鏡:電子束在穿過樣品時,會和樣品中的原子發生散射,樣品上某一點同時穿過的電子方向是不同,這樣品上的這一點在物鏡1-2倍焦距之間,這些電子通過過物鏡放大後重新匯聚,形成該點一個放大的實像,這個和凸透鏡成像原理相同。這里邊有個反差形成機制理論比較深就不講,但可以這么想像,如果樣品內部是絕對均勻的物質,沒有晶界,沒有原子晶格結構,那麼放大的圖像也不會有任何反差,事實上這種物質不存在,所以才會有這種儀器存在的理由。
掃描電鏡:電子束到達樣品,激發樣品中的二次電子,二次電子被探測器接收,通過信號處理並調制顯示器上一個像素發光,由於電子束斑直徑是納米級別,而顯示器的像素是100微米以上,這個100微米以上像素所發出的光,就代表樣品上被電子束激發的區域所發出的光。實現樣品上這個物點的放大。如果讓電子束在樣品的一定區域做光柵掃描,並且從幾何排列上一一對應調制顯示器的像素的亮度,便實現這個樣品區域的放大成像。
3、對樣品要求
(1)掃描電鏡
SEM制樣對樣品的厚度沒有特殊要求,可以採用切、磨、拋光或解理等方法將特定剖面呈現出來,從而轉化為可以觀察的表面。這樣的表面如果直接觀察,看到的只有表面加工損傷,一般要利用不同的化學溶液進行擇優腐蝕,才能產生有利於觀察的襯度。不過腐蝕會使樣品失去原結構的部分真實情況,同時引入部分人為的干擾,對樣品中厚度極小的薄層來說,造成的誤差更大。
(2)透射電鏡
由於TEM得到的顯微圖像的質量強烈依賴於樣品的厚度,因此樣品觀測部位要非常的薄,例如存儲器器件的TEM樣品一般只能有10~100nm的厚度,這給TEM制樣帶來很大的難度。初學者在制樣過程中用手工或者機械控制磨製的成品率不高,一旦過度削磨則使該樣品報廢。TEM制樣的另一個問題是觀測點的定位,一般的制樣只能獲得10mm量級的薄的觀測范圍,這在需要精確定位分析的時候,目標往往落在觀測范圍之外。目前比較理想的解決方法是通過聚焦離子束刻蝕(FIB)來進行精細加工。
透射電子顯微鏡的成像原理 可分為三種情況:
(1)吸收像:當電子射到質量、密度大的樣品時,主要的成相作用是散射作用。樣品上質量厚度大的地方對電子的散射角大,通過的電子較少,像的亮度較暗。早期的透射電子顯微鏡都是基於這種原理。
(2)衍射像:電子束被樣品衍射後,樣品不同位置的衍射波振幅分布對應於樣品中晶體各部分不同的衍射能力,當出現晶體缺陷時,缺陷部分的衍射能力與完整區域不同,從而使衍射波的振幅分布不均勻,反映出晶體缺陷的分布。
(3)相位像:當樣品薄至100Å以下時,電子可以穿過樣品,波的振幅變化可以忽略,成像來自於相位的變化。