1、關於SEM掃描電鏡的幾個問題,求大神出現...
如果是即將開始學習儀器操作的管理人員,建議先系統學習理論知識,再找專業的儀器工程師培訓。如果是學生,要使用電鏡,從安全形度考慮,1、2、3幾項通常是值機人員完成的。我可以簡單的向你介紹一下:1、主要是電源,只要能正常開機,一般無問題;2、加高壓前一般要達到額定真空,否則氣體電離度大、損傷電子槍,但是電鏡軟體一般都已經設置好,不到工作真空,根本加不上去高壓,所以只要能夠加高壓,也無其他特別的問題;做完電鏡關閉高壓,等30秒以上,待燈絲冷卻後再放氣為宜,主要也是為了保護電子槍;3、樣品台有它的額定移動距離,包括平面方向和上下方向,平面方向移動到極限時會有報警提示,看到提示往回移動即可。高度方向也如此,但是要注意向上移動時,要緩慢,要防止堅硬的試樣撞擊上方的探測器和極靴,損壞設備;4,電子束與試樣作用,可激發出多種信號,如二次電子信號(用於形貌觀察),背散射電子信號(用於區分微區成分)、俄歇電子信號(用於表面元素分析)、特徵X射線(用於內部元素分析)、陰極熒光(用於發光材料研究),這些信號已經被有效的加以利用,這是一門獨立的學科,若需要詳細了解,你需要系統地學習一下。
2、掃描電鏡sem和透射電鏡tem對樣品有何要求
透射電鏡是用高能電子束(加速電壓一般在200KV以上)照射樣品,透過樣品的電子由於樣品厚度、元素、缺陷、晶體結構等的不同,會產生不同的花樣或圖像襯度,由此可以推測樣品的相關信息。由於電子束要能透過樣品,因此樣品厚度要求很薄,一般要小於100納米。如果要做高分辨,要求更薄。
3、tem和sem的異同比較分析以及 環境掃描電鏡,場發射電鏡與傳統電鏡
TEM和SEM的異同比較分析以及環境掃描電鏡,場發射電鏡與傳統電鏡相比較的技術特點和應用
xrd是x射線衍射,可以分析物相,SEM是掃描電鏡,主要是觀察顯微組織,TEM是透射電鏡,主要觀察超限微結構。AES是指能譜,主要分析濃度分布。STM掃描隧道顯微鏡,也是觀察超微結構的。AFM是原子力顯微鏡,主要是觀察表面形貌用的。
TEM:
透射電子顯微鏡(英語:Transmission electron microscope,縮寫TEM),簡稱透射電鏡,是把經加速和聚集的電子束投射到非常薄的樣品上,電子與樣品中的原子碰撞而改變方向,從而產生立體角散射。散射角的大小與樣品的密度、厚度相關,因此可以形成明暗不同的影像。通常,透射電子顯微鏡的解析度為0.1~0.2nm,放大倍數為幾萬~百萬倍,用於觀察超微結構,即小於0.2μm、光學顯微鏡下無法看清的結構,又稱「亞顯微結構」。 TEM是德國科學家Ruskahe和Knoll在前人Garbor和Busch的基礎上於1932年發明的。
其他的建議樓主查看文獻啊,文獻上講解都是比較詳細的,百度知道字數有限,只能給你粘貼這么多了
4、有沒有人懂SEM掃描電鏡的,輻射大嗎
電鏡輻射來源主要源於,電子槍發射的電子束和電子束激發樣品表面出來的各種信號。而電子束直徑只有納米到10納米級別,因此產生的輻射很少很少。同時,電鏡電子槍位置有大塊鉛塊吸收輻射,樣品倉由很厚的金屬材料做成,因此對於電鏡整體而言,幾乎沒有對外的輻射。
另外,需要提醒樓主的是,電鏡雖然輻射不大,不過電鏡樣品千奇百怪,不免遇到一些有毒有害的物質材料,樓主需要做好保護措施(手套,口罩),既保護自己,又保護電鏡和樣品不受污染
5、掃描電鏡sem的主要原理是什麼?測試過程需要重點注意哪些操作
電鏡的原理是:電子槍發出電子束打到樣品表面,激發出二次電子、背散射電子、X-ray等特徵信號,經收集轉化為數字信號,得到相應的形貌或成分信息。
測試注意事項:
1、新人找別人幫忙測試時,
明確自己的測試內容,如何樣品前處理,測試時間,然後跟測試相關人員聯系確定能否滿足你的測試需求
2、新人自己操作測試時,
明確自己的測試內容,如何樣品前處理,測試時間,
測試時注意樣品乾燥潔凈,操作時樣品和樣品台避免撞到探頭
6、場發射掃描電鏡和環境掃描電鏡的區別。
掃描式電子顯微鏡,其系統設計由上而下,由電子槍 (Electron Gun) 發射電子束,經過一組磁透鏡聚焦 (Condenser Lens) 聚焦後,用遮蔽孔徑 (Condenser Aperture) 選擇電子束的尺寸(Beam Size)後,通過一組控制電子束的掃描線圈,再透過物鏡 (Objective Lens) 聚焦,打在樣品上,在樣品的上側裝有訊號接收器,用以擇取二次電子 (Secondary Electron) 或背向散射電子 (Backscattered Electron) 成像。
電子槍的必要特性是亮度要高、電子能量散布 (Energy Spread) 要小,目前常用的種類計有三種,鎢(W)燈絲、六硼化鑭(LaB6)燈絲、場發射 (Field Emission),不同的燈絲在電子源大小、電流量、電流穩定度及電子源壽命等均有差異。
熱游離方式電子槍有鎢(W)燈絲及六硼化鑭(LaB6)燈絲兩種,它是利用高溫使電子具有足夠的能量去克服電子槍材料的功函數(work function)能障而逃離。對發射電流密度有重大影響的變數是溫度和功函數,但因操作電子槍時均希望能以最低的溫度來操作,以減少材料的揮發,所以在操作溫度不提高的狀況下,就需採用低功函數的材料來提高發射電流密度。
價錢最便宜使用最普遍的是鎢燈絲,以熱游離 (Thermionization) 式來發射電子,電子能量散布為 2 eV,鎢的功函數約為4.5eV,鎢燈絲系一直徑約100μm,彎曲成V形的細線,操作溫度約2700K,電流密度為1.75A/cm2,在使用中燈絲的直徑隨著鎢絲的蒸發變小,使用壽命約為40~80小時。
六硼化鑭(LaB6)燈絲的功函數為2.4eV,較鎢絲為低,因此同樣的電流密度,使用LaB6隻要在1500K即可達到,而且亮度更高,因此使用壽命便比鎢絲高出許多,電子能量散布為 1 eV,比鎢絲要好。但因LaB6在加熱時活性很強,所以必須在較好的真空環境下操作,因此儀器的購置費用較高。
場發射式電子槍則比鎢燈絲和六硼化鑭燈絲的亮度又分別高出 10 - 100 倍,同時電子能量散布僅為 0.2 - 0.3 eV,所以目前市售的高解析度掃描式電子顯微鏡都採用場發射式電子槍,其解析度可高達 1nm 以下。
目前常見的場發射電子槍有兩種:冷場發射式(cold field emission , FE),熱場發射式(thermal field emission ,TF)
當在真空中的金屬表面受到108V/cm大小的電子加速電場時,會有可觀數量的電子發射出來,此過程叫做場發射,其原理是高電場使電子的電位障礙產生Schottky效應,亦即使能障寬度變窄,高度變低,因此電子可直接"穿隧"通過此狹窄能障並離開陰極。場發射電子系從很尖銳的陰極尖端所發射出來,因此可得極細而又具高電流密度的電子束,其亮度可達熱游離電子槍的數百倍,或甚至千倍。
場發射電子槍所選用的陰極材料必需是高強度材料,以能承受高電場所加諸在陰極尖端的高機械應力,鎢即因高強度而成為較佳的陰極材料。場發射槍通常以上下一組陽極來產生吸取電子、聚焦、及加速電子等功能。利用陽極的特殊外形所產生的靜電場,能對電子產生聚焦效果,所以不再需要韋氏罩或柵極。第一(上)陽極主要是改變場發射的拔出電壓(extraction voltage),以控制針尖場發射的電流強度,而第二(下)陽極主要是決定加速電壓,以將電子加速至所需要的能量。
要從極細的鎢針尖場發射電子,金屬表面必需完全乾凈,無任何外來材料的原子或分子在其表面,即使只有一個外來原子落在表面亦會降低電子的場發射,所以場發射電子槍必需保持超高真空度,來防止鎢陰極表面累積原子。由於超高真空設備價格極為高昂,所以一般除非需要高解析度SEM,否則較少採用場發射電子槍。
冷場發射式最大的優點為電子束直徑最小,亮度最高,因此影像解析度最優。能量散布最小,故能改善在低電壓操作的效果。為避免針尖被外來氣體吸附,而降低場發射電流,並使發射電流不穩定,冷場發射式電子槍必需在10-10 torr的真空度下操作,雖然如此,還是需要定時短暫加熱針尖至2500K(此過程叫做flashing),以去除所吸附的氣體原子。它的另一缺點是發射的總電
流最小。
熱場發式電子槍是在1800K溫度下操作,避免了大部份的氣體分子吸附在針尖表面,所以免除了針尖flashing的需要。熱式能維持較佳的發射電流穩定度,並能在較差的真空度下(10-9 torr)操作。雖然亮度與冷式相類似,但其電子能量散布卻比冷式大3~5倍,影像解析度較差,通常較不常使用。