1、stata做空間計量回歸SEM模型出不來結果的原因是什麼
空間計量比較復雜的,sem也比較復雜,對自由度、分布都有嚴格要求
2、RMSEA值大於0.08怎麼辦,結構方程模型
看上去你的模型擬合已經算是不錯了,結構方程的擬合指標臨界值設定本身就有主觀性,0.08隻是個經驗標准,而且不同的研究者有不同的經驗標准(比如常見的標准就有0.06和0.08),有研究者還把0.1作為一個最低限度。
通常只要你的大部分擬合指標都還不錯就行了,況且從寬泛標準的角度看,你的RMSEA也並不算完全不可接受。
所以不用怎麼辦了,結果OK的。
3、碩士畢業論文涉及sem結構方程模型,有了解amos的大神嗎?
結構方程模型可以用SPSSAU。操作非常簡單很容易上手,輸出標准格式結果和結構圖,針對每一步分析還會提供智能分析建議。
結構方程模型-spssau
結構圖-spssau
4、SEM結構方程模型是什麼?
sem 結構方程模型是社會科學研究中的一個非常好的方法。該方法在20世紀80年代就已經成熟,可惜國內了解的人並不多。「在社會科學以及經濟、市場、管理等研究領域,有時需處理多個原因、多個結果的關系,或者會碰到不可直接觀測的變數(即潛變數),這些都是傳統的統計方法不能很好解決的問題。20世紀80年代以來,結構方程模型迅速發展,彌補了傳統統計方法的不足,成為多元數據分析的重要工具。 結構方程模型分析:結構方程模型是一種建立、估計和檢驗因果關系模型的方法。模型中既包含有可觀測的顯在變數,也可能包含無法直接觀測的潛在變數。結構方程模型可以替代多重回歸、通徑分析、因子分析、協方差分析等方法,清晰分析單項指標對總體的作用和單項指標間的相互關系。
5、請問結構方程模型中,GFI,AGFI,ifi,rfi,nfi等指標是不是一定要0.9以上
最好是大於0.9,甚至於大於0.95,這些擬合指標的臨界值都是通過大量的數據模擬得到的,也就是說如果達不到這些指標,模型很可能就是誤設模型,不過我也有看到一篇數據模擬的論文里提到當樣本量小於500的時候,srmr是最合適的指標,如果小於0.05,可以肯定模型正確,若大於0.08,可以肯定是誤設的(適用於數據正態時,偏態時大於0.11認為模型誤設),而其他的擬合指標表現不穩定,那這個時候主要參考srmr就可以,其他的指標過得去就行,如果樣本量大於1000,NNFI,CFI,IFI這些指標比較合適,0.95以上可以認為模型正確,0.85以下可以斷定模型錯誤(適用於數據偏態時,正態時0.95以下即認為誤設)
你自己根據自己的的數據情況看吧,對於你提到的指標,我相信90%的文獻都說是0.9以上為標準的,這個經驗值還是很可信的,如果你不是正在寫論文,那完全可以接受這個結果,如果你一定想要結果好,那就要麼好好處理處理數據,重新做一下結構方程的分析,要麼就找到相關的文獻支持,以表明你用0.9以下的指標數值是合理的
如果是論文答辯或者發論文,只是0.8過一些那很可能要被答辯老師或者審稿人質疑的,接近0.9應該還勉強可以
6、二分類結果變數可以用SEM模型嗎?
據我所知二分類結果變數是可以有s1m模型的。
7、用stata做SEM結構方程,如何看擬合優度系數如GFI,AGFI等系數?
最好是大於0.9,甚至於大於0.95,這些擬合指標的臨界值都是通過大量的數據模擬得到的,也就是說如果達不到這些指標,模型很可能就是誤設模型,不過我也有看到一篇數據模擬的論文里提到當樣本量小於500的時候,srmr是最合適的指標,如果小於0.05,可以肯定模型正確,若大於0.08,可以肯定是誤設的(適用於數據正態時,偏態時大於0.11認為模型誤設),而其他的擬合指標表現不穩定,那這個時候主要參考srmr就可以,其他的指標過得去就行,如果樣本量大於1000,NNFI,CFI,IFI這些指標比較合適,0.95以上可以認為模型正確,0.85以下可以斷定模型錯誤(適用於數據偏態時,正態時0.95以下即認為誤設)
你自己根據自己的的數據情況看吧,對於你提到的指標,我相信90%的文獻都說是0.9以上為標準的,這個經驗值還是很可信的,如果你不是正在寫論文,那完全可以接受這個結果,如果你一定想要結果好,那就要麼好好處理處理數據,重新做一下結構方程的分析,要麼就找到相關的文獻支持,以表明你用0.9以下的指標數值是合理的
如果是論文答辯或者發論文,只是0.8過一些那很可能要被答辯老師或者審稿人質疑的,接近0.9應該還勉強可以